
Faculty of Physics, Mathematics and Informatics
Graduate School of Informatics

System and Network Engineering MSc

Project Spartan Forensics

Cybercrime and Forensics

James Gratchoff
james.gratchoff@os3.nl

Guido Kroon
guido.kroon@os3.nl

May 31, 2015

Abstract

Project Spartan is the codename of the new Microsoft Edge browser and
successor to its previous, Internet Explorer. This research paper gives insight

into the current artefacts that the current development versions of Project
Spartan leaves behind on workstations. The authors analysed what these
artefacts are, where they are located and how can they be gathered. This

research led to the conclusion that Project Spartan’s back end does not differ
much from the latest Internet Explorer versions, as Project Spartan still uses

similar ways to store data on the workstation it runs on. Furthermore, an
open source tool has been developed to gather some of these artefacts in an

automated way. The purpose of the tool is to gather the location of the
artefacts not present in the database.

Contents

1 Introduction 2
1.1 Scope, motivation and research question 2

2 Related work 4
2.1 Browser forensics . 4
2.2 Structure of Internet explorer . 5

3 Approach 6

4 Artefacts Analysis 7
4.1 Database . 7
4.2 Cache . 8
4.3 Cookies . 9
4.4 Bookmarks . 9
4.5 Visited URLs . 11
4.6 Download history . 12
4.7 Web Notes . 12
4.8 Cortana . 14
4.9 Reading list . 14
4.10 Tiles . 15
4.11 Private browsing . 15
4.12 Features not (yet) integrated in Project Spartan 16

5 Results 18
5.1 Project Spartan vs. Internet Explorer (similarities and differences) 18
5.2 Automated tool . 19

6 Conclusion 21

7 Future work 22

Bibliography 23

Appendices 24
A Spartan’s WebCache database . i
B Download history . iv
C Powershell script . vii
D Work separation . xi
Glossary . xii

1

Chapter 1

Introduction

Web browsing activity is a major source of information in forensics investiga-
tion [11]. Much open-source and proprietary software already exists to perform
forensic investigation on the most popular leading web browsers. These forensic
tools depend on the architecture of the web browsers and thus need to adapt
their code to new versions or new browsers.

Microsoft is moving away from their traditional web browser, called Internet
Explorer (IE), and launching their new Edge web browser, formerly codenamed
Project Spartan, which will be shipped by default on Windows 10. The web
browser uses the new Edge engine, which is a fork from their former Trident
engine that IE is based on.[13] However, as Edge is currently still in development
as Project Spartan, this research will refer to it as Project Spartan, and not as
Edge.

The purpose of this project is to gather information about new artefacts
that Project Spartan leaves behind on workstations. If time permits, an open
source tool for analysing these artefacts will be created as a proof of concept.

1.1 Scope, motivation and research question

As Edge is a newly developed browser, it is interesting to research the artefacts
it leaves on workstations, especially if more and more people are to start using
it when Windows 10 is released next summer. Therefore, this new information
may be valuable to the digital forensics community and will soon be needed
for investigations. This project will only target the browser artefacts. A quick
investigation of the new Cortana features has been also carried out. Information
that can be found on this project is related to Project Spartan and not to the
Edge browser that has not yet been released. However the browser is supposedly
just to be given another product name thus the artefacts found should be the
same and located in the same directory structure with a difference in the path
name. The path name that will be used in Edge is not known on the day of
writing.

2

Overall discussion of the significance and motivation resulted in the following
research question:

What and where are the artefacts Project Spartan leaves behind on
workstations, and how can these artefacts be gathered for further analysis to

serve as forensic evidence?

The above research question can be divided into the following research sub-
questions:

1. As the new Project Spartan engine is forked from its predecessor’s Trident
engine used with IE, how much does Project Spartan differ from its pre-
decessor and to what extent can existing forensic toolkits for browsers still
gather these artefacts in the same way they gather artefacts for Internet
Explorer?

2. Can a tool be developed, based on the assembled results, in order to gather
the artefacts of the Project Spartan web browser in an automated way?

3

Chapter 2

Related work

Due to it being a recent product, no forensic research related to Windows 10
or Project Spartan/ Edge has been published at the time of writing. However
much research has been done regarding web browser forensics. This project
started by analysing the structure of Project Spartan and also how the latest
version of Microsoft IE stored its information. Version 10 and later of IE will
be referred to as IE v10+ in the rest of this report. Then the similar features
of Microsoft Project Spartan were compared to IE v10+ in terms of artefacts
location and databases. Furthermore the new features of Project Spartan were
analysed and traced back to find where the artefacts location were stored on
disk.

2.1 Browser forensics

Forensics tools that investigate browser activity, rely on the location of arte-
facts stored on disk. These locations are specific to each browser. Thus these
tools need to adapt the locations and way of gathering information when a
new browser is released. Forensics investigators need to gather detailed and
trustworthy information about all the artefacts left on the disk by the browser.
Moreover, any kind of information that a browser leaves behind can be valuable
and of extreme importance in investigations. That is why it is important not
to neglect any artefacts that could lead to a stronger proof of user activity.

Private browsing has also become popular as it is a way of increasing pri-
vacy while browsing. Using private browsing, the browser is not supposed to
store any browsing activity during the session. Thus it is understandable that
private browsing forensics has been a developing area of research. Said et al
[12] researched Microsoft IE as well as Mozilla Firefox and Google Chrome re-
garding their privacy browsing features. They concluded that Google Chrome
and Mozilla Firefox complete a better task in hiding their private browsing data,
while Internet Explorer seems to leave evidence 'all over the hard drive'. Chivers
[6] conducted another research project targeting the private browsing feature of
IE 10, and was able to recover data from private browsing in a specific window
of time. Indeed by carving log files he was able to identify some substantial
records of private browsing that had taken place the last time the browser was
opened. Due to the short life cycle of private browsing records in the database,

4

these records could not be found after opening the browser a second time. To
carve the log files containing the previous records of the private browsing he
developed a tool, ESECarve.

2.2 Structure of Internet explorer

A great deal of research has been done related to IE version 10 and later. And
from our early investigation on the structure of Project Spartan we could say
that it is extremely similar to IE v10+. Microsoft Project Spartan and IE v10+
rely on an Extensible Storage Engine (ESE) database, previously known as Joint
Engine Technology (JET), to store their information. Metz [9], detailed in his
research what the format of the database is and Chivers [6] describes how the
ESE works. In IE 10, a single database named WebCacheV1.dat is dedicated
to storing artefacts. This database is located at:

IE WebCache database location
%LocalAppData%\Microsoft\Windows\WebCache

Artefacts present in this database differ in their type (e.g. Cache, History,
Cookies) and these types are divided into different containers tables ('Con-
tainers XX'). These containers can be identified using another container table
present in the same database, named 'Containers', that acts as an index ta-
ble specifying which artefacts correspond to which containers. Each container
shares the same fields that can be found in [9]. All these fields are valuable
for forensic investigations. The functioning of the database follows the steps de-
scribed in [6]. When a transaction is taking place the ESE first stores in memory
the information regarding this transaction in a log cache, then it subsequently
stores in memory the necessary database pages. As soon as the system is ready
it writes to the log file (e.g. V01.log). After this, if possible, the database is
updated with the new transaction and proceeds in a clean state, if not it will
proceed in a dirty state. If the state of the database is dirty it will have to
be recovered using the .chk files (that stores logged transactions from a known
checkpoint) and the corresponding log files. The database can also be recovered
to a clean state using the esentutl Windows tool.

Most of the artefacts are not only stored in the database but can also be
found on the disk as files. For IE 10, these artefacts are located in the sub
directories of:

IE directory location
%LocalAppData%\Microsoft\InternetExplorer\

The artefacts that can be found there are for example the cache files, the cookies,
the favourites and what have you. Another location where IE stores information
is in the registry key[3]. The information located there is obfuscated but can
be read with IE PassView[4]. The information that can be found there is auto
complete forms, auto complete password or typed URLs. The location of the
registry key is:

IE registry key location
HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\

5

Chapter 3

Approach

The first part of the research was to understand the structure of the Project
Spartan browser and understand what methods it was using to store infor-
mation about an user. Secondly an investigation on how and where artefacts
were found in most used web-browsers was carried out. This investigation was
mainly focused on IE version 10 and later, due to the similarities found in the
first step with the Project Spartan browser. Further to this investigation the
authors compared the artefacts from IE and Project Spartan and documented
what new artefacts could be found on Project Spartan. The next step was to
discover where and how artefacts are stored on the disk. Thereafter tools used
to investigate browser activity were tested on the new browser. The last step
was to summarise what had been found using available tools and to create a
tool that is able to find the new artefacts discovered on Project Spartan.

The following tools were used for this research:

• ESEDatabaseView v1.30 [10] ESEDatabaseView is simple utility to
browse through ESE structured database files, developed by Nir Sofer.
We used it to browse through the ESE databases Project Spartan uses
to store its data in, namely the WebCacheV01.dat and the Spartan.edb

files.

• ESECarve v1.20 ESECarve is a forensic tool written by Chivers that is
used to inspect and and recover deleted data from ESE database files.

• Notepad++ v6.7.8 (with the hex editor plugin v0.9.5) [7] Notepad++
is an open source text editor for Windows operating systems. Together
with the hex editor plugin we used this tool to open and read contents of
many files.

6

Chapter 4

Artefacts Analysis

This section describes where Project Spartan store its artefacts on disk and
detail whereas or not these artefacts could be found in the Extensible Storage
Engine (ESE) database. A section also describes what features, that are likely
to leave artefacts, are not implemented yet in Project Spartan.

4.1 Database

Microsoft Project Spartan uses the same database structure as the latest ver-
sions of Internet Explorer, namely the ESE database. The Internet Explorer 10
ESE database structure has been researched in-depth by [8].

The main WebCache database file is located in a dispersed fashion, which
differs per user, hence the %LocalAppData% environment variable:

Spartan’s WebCache database location
%LocalAppData%\Spartan\Database\WebCacheV01.dat

Numerous tools exist for reading these database files, which we will also
list in the Tools section, but we mostly used ESECarve, ESEDatabaseView and
esentutl. Within this database file, all sorts of information is stored, but not
much actual content (some, but definitely not all). Rather, it is more like an
index which keeps track of all the locations where the actual artefacts are stored.

When we try to open this file with a hex editor, we can see that this version
still uses the same format that previous versions use. The hex dump of the
database headers can be interpreted as follows [8] (see figure 4.1).

This can be verified when analysing the database with esentutl, which is
installed by default on every Windows system. Note that the database is using
little endian, so when compared with a hexadecimal dump, every byte range
needs to be read in reverse order. While the database mostly stores Metadata
as opposed to actual content, there are some interesting artefacts to be harvested
from within this file, such as:

1. visited URLs (see section 4.5)

2. Cortana search queries (see section 4.8)

3. download history (see section 4.6).

7

Figure 4.1: Hex dump with annotations.[8]

The ESE database also contains the location of every other artefacts that
are stored locally on the system (see figure 4.2).

The container that is being viewed in figure 4.2 shows all the container IDs of
the other containers that can be viewed. It shows what content is being stored
in which container and where it can be found on the system (folder paths).

4.2 Cache

Project Spartan stores its caches in a dispersed fashion as well, which differs
per user, hence the %LocalAppData% environment variable:

Project Spartan’s cache location
%LocalAppData%\packages\microsoft.windows.spartan_{PackageID}\

AC\#!001\Spartan\Cache

Just like IE there are four cache folders in this directory, which each con-
tain a portion of the cache. They contain all sorts of content which is saved
locally when browsing with Project Spartan, like HTML pages, pictures and
even downloads which are stored here temporarily before they are moved to the
actual download folder. This is an example of such a cache folder:

8

Figure 4.2: Location of folders in disk.

4.3 Cookies

Project Spartan stores its cookies in a dispersed fashion as well, which differs
per user, hence the %LocalAppData% environment variable:

Project Spartan’s cookie location
%LocalAppData%\packages\microsoft.windows.spartan_{PackageID}\

AC\#!001\Spartan\Cookies\

The cookies are stored in txt files with a randomly chosen name. This is an
example of a cookie '1YTEYKVD.txt':

Project Spartan’s cookie example
gglckVUogwAAAAfJxZP1Heveresttech.net/

2147484672224664780830443727142055259030443526*

Project Spartan knows which cookie file belongs to which domain as this is
being tracked in the WebCachev01.dat database.

4.4 Bookmarks

Project Spartan stores its bookmarks in a dispersed fashion as well, which dif-
fers per user, hence the %LocalAppData% environment variable:

9

Figure 4.3: Cache folder screenshot.

Project Spartan’s bookmarks location
%LocalAppData%\packages\microsoft.windows.spartan_{PackageID}\

AC\Spartan\User\Default\Favorites

Figure 4.4 shows a screenshot of the bookmarks folder.

10

Figure 4.4: Bookmarks folder screenshot.

4.5 Visited URLs

The visited URLs is a form of Metadata that reveals information of what URLs
the user browsed. It does not show the actual content of the web pages, but
it is still valuable information for forensic investigators. The URLs are stored
within the database file we covered in section 4.1. The following screenshot (see
figure 4.5) gives an impression of these artefacts. Some columns are not shown,
which also reveal information about dates and time, and which can be useful
when creating time lines:

11

Figure 4.5: Visited URLs container screenshot.

4.6 Download history

Downloads history is also found in the database file we covered in section 4.1.
The container name is 'iedownload'. There are multiple containers under that
name, but it is container ID 17 on our system (see figure 4.6). The values are
hex encoded and thus need to be converted to ASCII readable text in order
to read it (see appendix B for a more detailed overview). The downloads are
temporarily stored in the cache location we covered in section 4.2. When the
download is completed, it is no longer to be found there, as it is then moved to
the download folder.

Figure 4.6: Download history artefacts in the database, which are hex encoded.

4.7 Web Notes

Interestingly enough, Microsoft Spartan stores its Web Notes in the bookmarks
folder as well (see figure 4.7):

12

Project Spartan’s Web Notes location
%LocalAppData%\packages\microsoft.windows.spartan_{PackageID}\

AC\Spartan\User\Default\Favorites

Figure 4.7: Web Notes location screenshot, which are stored as part of the
favourites.

However, temporary files are stored the History folder (see figure 4.8):

Project Spartan’s temporary Web Notes location
%LocalAppData%\packages\microsoft.windows.spartan_{PackageID}\

AC\#!001\Spartan\History\

13

Figure 4.8: Web Notes artefacts that are temporarily stored in the History
folder, which contains drafts that are not saved to the favourites.

4.8 Cortana

Project Spartan uses Bing as its search engine for Cortana search queries. This
is an experimental feature that was not available to our country yet (The Nether-
lands), so we used an OpenVPN[5] connection to the US to test this new feature.
Spartan stores its search queries inside the database file we covered in section
4.1. The container name is 'DependencyEntry 5'(see figure 4.9).

Figure 4.9: Cortana search artefacts that are stored inside the database file,
viewed with ESEDatabaseView.

4.9 Reading list

The reading list is stored inside a separate database, also separate for each
user. We added a web page to the reading list, which could be found inside the
database when we opened the database with ESEDatabaseView (see figure4.10).

14

Project Spartan’s Reading List database location
%LocalAppData%\Packages\Microsoft.Windows.Spartan_{PackageID}\

AC\Spartan\User\Default\DataStore\Data\nouser1\120712-0049\

DBStore\spartan.edb

Figure 4.10: Reading list artefacts that are stored inside the database file,
viewed with ESEDatabaseView.

4.10 Tiles

Since Windows 8, tiles are available and can be modifiable. This feature is
included in Project Spartan as well. It consists of fonts, colours and interface
elements for applications. The tiles are not stored in the ESE database but can
be found on the disk. They are located at:

Project Spartan’s tiles location
%LocalAppData%\Packages\Microsoft.Windows.Spartan_{PackageID}\

AC\#!001\Spartan\User\Default\Tiles

4.11 Private browsing

For analysing artefacts for InPrivate browsing, we needed to upgrade our system
with a newer version of Windows 10 (build 10122), which had the new Spartan
Browser that supported InPrivate browsing. In order to retrieve the InPrivate
pages visited, we used a tool created by Chivers, named ESECarve. This tool
was intended to retrieve InPrivate browsing artefacts from the IE 10 browser.
Due to incompatibility of the software on Windows 10, it was necessary to move
the folder containing the database files (.chk, .log and WebCacheV01.dat) to an
earlier version of Windows. We were successfully able to recover Project Spartan
InPrivate pages with Windows 7 and the ESECarve tool (see figure 4.11).

The life cycle of InPrivate logs described in [6] was verified with Project
Spartan. Indeed the InPrivate history could be recovered from the same session
with ESEDatabaseView (see figure 4.12) but as soon as we cleared the cache and
restarted the browser these entries disappeared from the container. However the
entries were recovered using the ESECarve tool that uses the .log and .chk files
to recover information about the InPrivate browsing.

0We would like to thank H. Chivers to make his tool available for our research.

15

Figure 4.11: InPrivate browsed URLs screenshot of a CSV file produced by
ESECarve, which can still be carved after clearing the cache.

Figure 4.12: InPrivate browsed URLs screenshot in ESEDatabaseView, which
are erased after clearing the cache, but can still be carved with ESECarve.

4.12 Features not (yet) integrated in Project Spar-
tan

The version of Project Spartan available in the latest Windows 10 build (10122)
does not include all the features that should be present on a browser. New fea-
tures are awaited such as the password storage or extensions capability. IThome
[2], leaked some screenshots of an unreleased build of Windows 10 (10123).
These screenshots show new features implemented in Project Spartan such as:

• Credential storage As of yet, Project Spartan does not enable users to
store their credentials whenever they login to a certain website.

• Forms storage As of yet, Project Spartan does not enable users to store
forms whenever a user fills in a digital form. However, we found the fol-
lowing key that’s similar to a IE 11 registry key (albeit still empty) it is
thus likely that the forms will be stored there:

Project Spartan’s IntelliForms registry key
HKEY_USERS\{User-SID}\SOFTWARE\Classes\Local Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\Storage\microsoft.windows.spartan_{Package-ID}\Spartan\IntelliForms

• New features in Cortana Current features, such as Cortana, may
change over time or have added features, which is also interesting for
future research.

16

These features could not be investigated as the 10123 release was not avail-
able at the time of writing.

Other potential features that are currently not part of Project Spartan:

• Synchronisation Current popular browsers are currently offering syn-
chronisation of passwords, bookmarks and such. It would not be a far
fetched idea that Microsoft may implement such a feature in later devel-
opment versions of Project Spartan, or final versions of EDGE.

17

Chapter 5

Results

This section presents what are the results of our investigation on the Project
Spartan browser. First the similarities and differences found between Project
Spartan and IE v10+ will be described. This is followed by a description of the
automated tool created to find the missing artefacts that are not documented
in the ESE database.

5.1 Project Spartan vs. Internet Explorer (sim-
ilarities and differences)

The investigation performed in this research, highlighted the Project Spartan
artefacts. This section compares the artefacts found in Project Spartan with
the latest versions of IE. This comparison is done as the artefacts created by the
two browsers are extremely similar. At the time of writing not all the features
of Project Spartan are available. It is thus difficult to deduce all the similarities
and differences.

First of all, it is worth mentioning that the back end of Project Spartan is
really similar to IE v10+. They both use the same database engine, named
ESE database, in order to store information about user activity and to provide
a way of recovering crashes occurring in software. It is understandable that
these two browsers use the same database engine as the ESE database is used
as the core system of many Windows-like features such as Microsoft Exchange
Server, Active Directory and Desktop Search [1]. As a result, the structure of
the Project Spartan database is also really similar to the latest versions of IE
v10+. These allow most of the software created to find artefacts in the ESE
database to work in with Project Spartan. However some tweaks need to be
implemented to make them work with Windows 10. 1

However, new features have been introduced with Project Spartan. These
features introduces new artefacts that can be of considerable importance in
forensic investigations. The new features have been documented in Chapter
4. As an example, the information stored by Cortana can be valuable for an
investigator as it stores the values that are searched using the engine. In this

1The tweaks needed to run ESECarve for Project Spartan on Windows 10 have been
forwarded to Chivers

18

database suggestions made to the user (based on its profile) by the engine are
also stored. Other new features such as the reading list or the Web Notes are
likely to be of great interest to an investigator.

To conclude, the structure of Project Spartan is in the end similar to the
latest versions of IE. New artefacts appeared as the browser offers features that
were not implemented on IE. This artefacts have been documented and the
upcoming section presents a proof of concept reuniting the artefacts that were
not found in the ESE database.

5.2 Automated tool

Not all the artefacts are stored in the ESE database, that is why the authors
created a proof of concept able to retrieve the missing artefacts. The script does
not retrieve the artefacts present in the database as this database can be read
with ESEDatabaseView or with the ESECarve tool. The goal was not to rein-
vent the wheel but to complete the tool present in the open source community.
This tool (named SpartanLeftovers) can be run next to ESECarve to retrieve the
most valuable artefacts from the Project Spartan browser. The script is written
in PowerShell 3.0 and allows an investigator to easily summarise the location
of the missing artefact in clear and readable csv format. SpartanLeftovers is
open source and available in appendix C. The artefacts that are targeted are the
favourites, the web notes, the stored tiles and the last unexpectedly closed tabs.
Figure 5.1 shows an output of the script. The script lists all the files present
in the related directories with their path, creation time, last accessed time, last
modification time, owner of the file, attributes and size. From a forensic stand-
point the tool can be run on an mounted disk and does not write on the targeted
disk. It has been chosen not to access and carve the files in order not to change
the access time values this is why the tool only provides the location of the files.
The following figure shows the hash difference created using FTK:

hash difference before/after running the tool
Hashes created before running the tool

MD5 checksum: 8713ad582467c4239402afd0cf055c32

SHA1 checksum: bb775dbb75f2ac06ab0c6a870a334d2542d776d7

Hashes created after running the tool

MD5 checksum: 8713ad582467c4239402afd0cf055c32

SHA1 checksum: bb775dbb75f2ac06ab0c6a870a334d2542d776d7

It is however advisable to use a write blocker to prevent the connection from
the disk to the forensic station to change the disk image and thus the hash.

19

Figure 5.1: Output of the PowerShell script when dumping all missing artefacts location

20

Chapter 6

Conclusion

Currently the way in which and the location where Project Spartan stores its
artefacts is very similar to previous versions of Internet Explorer. The browser
relies heavily on the ESE database structure, which makes current ways of col-
lecting artefacts not much harder. Most artefacts of features have been analysed
that are part of the current development builds of Project Spartan and we sus-
pect that current forensic toolkits that also harvest artefacts of IE will not need
to drastically alter their harvesting techniques to also gather artefacts from
Project Spartan. Toolkit developers are advised to use the path locations spec-
ified in this paper to acquire the artefacts of Project Spartan. The new features
such as the Web Notes or Cortana integration can also give insight into the
digital footprint a user can leave on a system. These new features should also
be added to existing forensic toolkits as well. It should be noted that Project
Spartan is still in development and artefacts may change over time (see chapter
7 for more on future work considerations).

The authors also developed a tool which gathers some information analysed
in an automated way. The tool is open source and has been designed for foren-
sic/research purposes. It provides a way of recovering the artefacts, left behind
by the Project Spartan browser, that are not stored in the ESE database and/or
that cannot be retrieved with the ESECarve tool developed by Chivers. The
source code (Appendix C) is open to any improvements.

21

Chapter 7

Future work

This research outlines some new artefacts that can be gathered within the cur-
rent development versions of Project Spartan. However, there are a couple of
elements to be considered for future work.

This research should be reviewed whenever Microsoft releases a final and
stable version of Edge. This research only focused on the development versions of
Project Spartan. Current features that have been analysed during this research
may change over time, as well as new features that might be added in the future,
which we already outlined in section 4.12. Features like a credential manager,
forms storage, synchronisation of connected device are features that would be
very interesting subjects for research once they have been implemented.

Currently, the ESE database structure has not been greatly researched, and
this also differs per implementation that uses the ESE database structure, such
as IE, Exchange and now Project Spartan.

Also, as InPrivate (private browsing) artefacts can still be harvested from the
ESE database, it would be good to see Microsoft fix this and perform a similar
project as done by Chivers[6] to see if these artefacts can still be harvested.
However questions arise if this possibility to harvest such information, with the
right forensics skills, was made intentionally for forensics purposes.

22

Bibliography

[1] Extensible storage engine. Microsoft Developer Network, 2012.

[2] Exclusive broke the news: Win10 preview version 10123, edge browser new
change. IT House Original, 2015.

[3] Forensically interesting spots in the windows 7, vista and xp file system
and registry. irongeek, 2015.

[4] Ie passview. Nirsoft, 2015.

[5] Openvpn. OpenVPN Technologies, Inc, 2015.

[6] Howard Chivers. Private browsing: A window of forensic opportunity. 2013.

[7] Jens Lorenz. Notepad++ Plugins - Browse Files at SourceForge.net. http:
//sourceforge.net/projects/npp-plugins/files/, 2015.

[8] Bonnie Malmström and Philip Teveldal. Forensic analysis of the ese
database in internet explorer 10. 2013.

[9] Joachim Metz. Extensible storage engine (ese) database file (edb) format
specification. 2010.

[10] Nir Sofer. ESEDatabaseView - View/Open ESE Database Files (Jet Blue
/ .edb files). http://www.nirsoft.net/utils/ese_database_view.html,
2015.

[11] Junghoon Oh, Seungbong Lee, and Sangjin Lee. Advanced evidence collec-
tion and analysis of web browser activity. digital investigation, 8:S62–S70,
2011.

[12] Huwida Said, Noora Al Mutawa, Ibtesam Al Awadhi, and Mario
Guimaraes. Forensic analysis of private browsing artifacts. In Innova-
tions in information technology (IIT), 2011 International conference on,
pages 197–202. IEEE, 2011.

[13] Jason Weber. Project spartan and the windows 10 january preview build.
Microsoft IE, 2015.

23

http://sourceforge.net/projects/npp-plugins/files/
http://sourceforge.net/projects/npp-plugins/files/
http://www.nirsoft.net/utils/ese_database_view.html

Appendices

24

Appendix A

Spartan’s WebCache
database

As previously mentioned before, Microsoft Project Spartan uses the same Ex-
tensible Storage Engine (ESE) database structure as previous versions of IE.
The IE 10 ESE database structure has been researched in-depth by Malmström
and Teveldal. [8]

When opening this file with a hex editor, we can see that this version still
uses the same format that previous versions use:

i

Sample of a Spartan WebCache hexdump
gkroon@desktop-41:~\$ xxd -c 16 -g 4 WebCacheV01.dat | head -n 20

0000000: 8c45e204 efcdab89 20060000 00000000 .E......

0000010: 1bce0700 00000000 453ea999 1f0f0b17E>......

0000020: 04730b00 00000000 00000000 00000000 .s..............

0000030: 00000000 03000000 03032800 44010000(.D...

0000040: 1e360e0f 05739b0e 37330e0f 0573770e .6...s..73...sw.

0000050: 68022600 43010000 1e360e0f 05739b0e h.&.C....6...s..

0000060: 03032800 44010000 01000000 d1515f91 ..(.D........Q_.

0000070: 1e0f0b17 0473470c 00000000 00000000sG.........

0000080: 00000000 00000000 00000000 00000000

0000090: 00000000 00000000 00000000 00000000

00000a0: 00000000 00000000 00000000 00000000

00000b0: 00000000 00000000 00000000 00000000

00000c0: 00000000 00000000 00000000 00000000

00000d0: 00000000 49000000 0a000000 00000000I...........

00000e0: 5a270000 00000000 14000000 00800000 Z'..............

00000f0: 00000000 00000000 00000000 00000000

0000100: 00000000 00000000 00000000 00000000

0000110: 00000000 00000000 00000000 00000000

0000120: 00000000 00000000 00000000 00000000

0000130: 00000000 00000000 00000000 00000000

The above hex dump of the database headers can be interpreted as follows
[8]:

Hex offset Hex value Description
000 - 003 8c45e204 Database checksum
004 - 007 efcdab89 File signature
008 - 011 20060000 File format version
010 - 017 1bce0700 00000000 Database time
018 - 033 453ea999 [...] 00000000 Database signature
034 - 037 03000000 Database state
0e8 - 0eb 14000000 File format revision
0ec - 0ef 00800000 Page size in bytes

Table A.1: Planning.

This can be verified when analysing the database with esentutl, which is
installed by default on every Windows system. Note that the database is using
little endian, so when comparing with a hex dump, every byte range needs to be
read in reverse order. For example, the page size is 0x00800000 which we need
to reverse in Endianess, so that gives us 0x00008000, which is 32768 in decimal,
which means it is 32768 bytes, or 32 KiB per page. Every page’s offset starts
at 32 KiB increments, which is offset 0x8000 when exploring in a hex dump. If
we go to this offset, we can see the start of the first page. The second starts at
64 KiB, and so on.

Database information using esentutl
C:\WINDOWS\system32>esentutl -mh WebCacheV01.dat

ii

Extensible Storage Engine Utilities for Microsoft(R) Windows(R)

Version 10.0

Copyright (C) Microsoft Corporation. All Rights Reserved.

Initiating FILE DUMP mode...

Database: C:\Users\Guido\Desktop\Database\WebCacheV01.dat

DATABASE HEADER:

Checksum Information:

Expected Checksum: 0x04e2458c

Actual Checksum: 0x04e2458c

Fields:

File Type: Database

Checksum: 0x4e2458c

Format ulMagic: 0x89abcdef

Engine ulMagic: 0x89abcdef

Format ulVersion: 0x620,20

Engine ulVersion: 0x620,20

Created ulVersion: 0x620,20

DB Signature: Create time:04/23/2015 13:15:31.005

Rand:2578005573

Computer:

cbDbPage: 32768

dbtime: 511515 (0x7ce1b)

State: Clean Shutdown

Log Required: 0-0 (0x0-0x0)

Log Committed: 0-0 (0x0-0x0)

Log Recovering: 0 (0x0)

GenMax Creation: 00/00/1900 00:00:00.000

Shadowed: Yes

Last Objid: 73

Scrub Dbtime: 0 (0x0)

Scrub Date: 00/00/1900 00:00:00

Repair Count: 0

Repair Date: 00/00/1900 00:00:00.000

Old Repair Count: 0

Last Consistent: (0x144,28,303) 05/15/2015 16:54:30.973

Last Attach: (0x143,26,268) 05/15/2015 16:51:55.955

Last Detach: (0x144,28,303) 05/15/2015 16:54:30.973

Last ReAttach: (0x0,0,0) 00/00/1900 00:00:00.000

Dbid: 1

Log Signature: Create time:04/23/2015 13:15:30.803

Rand:2438943185

Computer:

OS Version: (10.0.10074 SP 0 NLS ffffffff.ffffffff)

iii

Appendix B

Download history

The download history is part of the ESE database. This is an example of :

Project Spartan’s Download history raw hex value
8A 00 00 00 0B 00 00 00 00 00 00 00 00 00 00 00 B0 04 00 00

CA 8C C2 EC 11 FB E4 11 A0 74 08 00 27 AF 21 F0 16 C3 48 E1

1E 8F D0 01 00 00 00 00 91 01 00 00 00 00 00 00 01 00 00 00

01 00 00 00 00 00 00 00 01 00 00 00 88 89 43 00 00 00 00 00

75 05 25 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00

00 00 00 00 01 00 00 00 00 00 00 00 06 00 00 00 00 00 00 00

98 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

01 00 00 00 00 00 00 00 00 00 01 00 01 00 00 00 01 00 00 00

02 00 00 00 6C A8 D0 CE 00 00 00 00 00 00 00 00 A0 8B 1E 50

5E 00 00 00 02 00 00 00 00 00 00 00 00 EE 09 53 5E 00 00 00

DA D9 CA 7F FD 7F 00 00 04 00 00 00 5E 00 00 00 01 00 00 00

FD 7F 00 00 30 DB 16 41 56 00 00 00 00 00 00 00 9A 09 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 B0 EE 09 53

00 00 00 00 C8 EE 09 53 5E 00 00 00 C0 08 65 4C 5E 00 00 00

01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 50 00 69 00 72 00 69 00 66 00 6F 00 72 00 6D 00

20 00 4C 00 74 00 64 00 00 00 68 00 74 00 74 00 70 00 3A 00

2F 00 2F 00 66 00 69 00 6C 00 65 00 68 00 69 00 70 00 70 00

6F 00 2E 00 63 00 6F 00 6D 00 2F 00 64 00 6F 00 77 00 6E 00

6C 00 6F 00 61 00 64 00 5F 00 72 00 65 00 63 00 75 00 76 00

61 00 2F 00 64 00 6F 00 77 00 6E 00 6C 00 6F 00 61 00 64 00

2F 00 37 00 63 00 63 00 38 00 32 00 37 00 34 00 37 00 31 00

35 00 63 00 36 00 34 00 62 00 64 00 36 00 66 00 33 00 35 00

30 00 62 00 65 00 64 00 64 00 35 00 39 00 62 00 65 00 30 00

33 00 62 00 32 00 2F 00 00 00 61 00 70 00 70 00 6C 00 69 00

63 00 61 00 74 00 69 00 6F 00 6E 00 2F 00 78 00 2D 00 6D 00

73 00 64 00 6F 00 77 00 6E 00 6C 00 6F 00 61 00 64 00 00 00

43 00 3A 00 5C 00 55 00 73 00 65 00 72 00 73 00 5C 00 47 00

75 00 69 00 64 00 6F 00 5C 00 41 00 70 00 70 00 44 00 61 00

74 00 61 00 5C 00 4C 00 6F 00 63 00 61 00 6C 00 5C 00 50 00

iv

61 00 63 00 6B 00 61 00 67 00 65 00 73 00 5C 00 6D 00 69 00

63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 2E 00 77 00 69 00

6E 00 64 00 6F 00 77 00 73 00 2E 00 73 00 70 00 61 00 72 00

74 00 61 00 6E 00 5F 00 63 00 77 00 35 00 6E 00 31 00 68 00

32 00 74 00 78 00 79 00 65 00 77 00 79 00 5C 00 41 00 43 00

5C 00 23 00 21 00 30 00 30 00 31 00 5C 00 53 00 70 00 61 00

72 00 74 00 61 00 6E 00 5C 00 43 00 61 00 63 00 68 00 65 00

5C 00 30 00 4F 00 43 00 45 00 57 00 4B 00 43 00 37 00 5C 00

72 00 63 00 73 00 65 00 74 00 75 00 70 00 31 00 35 00 32 00

5B 00 31 00 5D 00 2E 00 65 00 78 00 65 00 00 00 68 00 74 00

74 00 70 00 3A 00 2F 00 2F 00 66 00 73 00 33 00 34 00 2E 00

66 00 69 00 6C 00 65 00 68 00 69 00 70 00 70 00 6F 00 2E 00

63 00 6F 00 6D 00 2F 00 36 00 38 00 39 00 33 00 2F 00 38 00

35 00 62 00 37 00 32 00 38 00 31 00 36 00 34 00 66 00 32 00

65 00 34 00 31 00 35 00 38 00 62 00 39 00 35 00 34 00 37 00

37 00 30 00 37 00 31 00 38 00 38 00 38 00 34 00 34 00 64 00

33 00 2F 00 72 00 63 00 73 00 65 00 74 00 75 00 70 00 31 00

35 00 32 00 2E 00 65 00 78 00 65 00 00 00 43 00 3A 00 5C 00

55 00 73 00 65 00 72 00 73 00 5C 00 47 00 75 00 69 00 64 00

6F 00 5C 00

If one were to convert this directly to ASCII, one would get a similar text
like this:

Project Spartan’s Download history raw ASCII value
??'??!?????H??

???C????????

u??%??

??

??????l???????????????????????^???????????????????????^?????

??????????????????^?????????????????0?????V?????????????????

??^????????e??^?????

??

????????????????????????????????????P??i??r??i??f??o??r??m??

??L??t??d?????h??t??t??p??:??/??/??f??i??l??e??h??i??p??p??o

??.??c??o??m??/??d??o??w??n??l??o??a??d??_??r??e??c??u??v??a

??/??d??o??w??n??l??o??a??d??/??7??c??c??8??2??7??4??7??1??5

??c??6??4??b??d??6??f??3??5??0??b??e??d??d??5??9??b??e??0??3

??b??2??/?????a??p??p??l??i??c??a??t??i??o??n??/??x??-??m??s

??d??o??w??n??l??o??a??d?????C??:??\??U??s??e??r??s??\??G??u

??i??d??o??\??A??p??p??D??a?????????????????????????????????

??

??

??

??

??

??

??

??

??

v

??????????????????????????????????????

This is not very helpful yet as some character cannot be converted to ASCII.
If one were to omit all the unnecessary signs (here question marks) one would
get the following text:

Project Spartan’s Download history trimmed ASCII value
'!HCu%l^^^0V^e^Piriform Ltdhttp://filehippo.com/download_rec

uva/download/7cc8274715c64bd6f350bedd59be03b2/application/x-

msdownloadC:\Users\Guido\AppDa

One can derive from this string that Piriform Recuva from filehippo.com

has been downloaded with Project Spartan.

vi

filehippo.com

Appendix C

Powershell script

SpartanLeftovers source code
<#

.SYNOPSIS

Carving tool of the Spartan artefacts. UvA - SNE 2015

.NOTES

File Name : spartanforensic.ps1

Author : J Gratchoff (james.gratchoff@os3.nl)

Prerequisite : PowerShell V3

Copyright 2015

#>

$drive = Read-Host " `n Welcome in SpartanLeftovers `n `n Pleas

e enter the drive letter you wish to analyse"

If ((Test-Path $drive":"))

{

$dest = Read-Host " Enter the destinatio

n drive you wish to store the information"

If (($drive -eq $dest))

{

echo "`n `n In order to be foren

sically sound please choose another path to store your informati

on on. Use c or C for the C:/ drive"

exit

}

else

{

echo " `n This utility will not store on

the targeted drive however a write blocker is highly recommended

to prevent the connection to modify the targeted device."

$username = Read-Host " Enter the usern

ame you wish to investigate"

If ((Test-Path $drive":"\Users\$usernam

e))

{

$spartanname = Get-ChildItem $dr

vii

ive":"\Users\$username\appdata\local\packages\microsoft.windows.

spartan*

$path = $spartanname.Fullname

echo " This tool can be used in

conbination with ESEcarve (written by Chivers) to locate the art

efacts that are not present in the database and new to Microsoft

Edge. `n "

$name = Read-Host " Select artef

act and press enter `n 1: Favorites `n 2: Recovery tabs `n 3: We

b Notes `n 4: Tiles `n 5: Dump all the missing artefacts! `n all

this commands output to a csv file located on the desired direct

ory"

If($name -eq 1)

{

Get-ChildItem -Recurse $

path\AC\Spartan\User\Default\Favorites -force| ForEach-Object {$

_ | add-member -name "Owner" -membertype noteproperty -value (ge

t-acl $_.fullname).owner -passthru} | Sort-Object LastAccessTime

| Select Name,CreationTime,CreationTimeUtc,LastWriteTime,LastWri

teTimeUtc,LastAccessTime,LastAccessTimeUtc,IsReadOnly,Mode,Lengt

h,attributes,Owner,Exists,DirectoryName | Export-Csv -Force -NoT

ypeInformation ${dest}:\Favorites.csv

echo "`n `n Dumped the f

avourites locations on:" ${dest}":\Favorites.csv"

exit

}

elseIf($name -eq 2)

{

Get-ChildItem -Recurse $

path\AC\Spartan\User\Default\Recovery\Active -force| ForEach-Obj

ect {$_ | add-member -name "Owner" -membertype noteproperty -val

ue (get-acl $_.fullname).owner -passthru} | Sort-Object LastAcce

ssTime | Select Name,CreationTime,CreationTimeUtc,LastWriteTime,

LastWriteTimeUtc,LastAccessTime,LastAccessTimeUtc,IsReadOnly,Mod

e,Length,attributes,Owner,Exists,DirectoryName | Export-Csv -For

ce -NoTypeInformation ${dest}:\Recoverydirectory.csv

echo "`n `n Dumped the r

ecovery tabs locations on:" ${dest}":\Recoverydirectory.csv"

exit

}

elseIf($name -eq 3)

{

Get-ChildItem -Recurse $

path\AC\"#!001"\Spartan\History -force| ForEach-Object {$_ | add

-member -name "Owner" -membertype noteproperty -value (get-acl $

_.fullname).owner -passthru} | Sort-Object LastAccessTime | Sele

ct Name,CreationTime,CreationTimeUtc,LastWriteTime,LastWriteTime

Utc,LastAccessTime,LastAccessTimeUtc,IsReadOnly,Mode,Length,attr

ibutes,Owner,Exists,DirectoryName | Export-Csv -Force -NoTypeInf

viii

ormation ${dest}:\Historydirectory.csv

echo "`n `n Dumped the w

eb notes location on: " ${dest}":\Historydirectory.csv"

exit

}

elseIf($name -eq 4)

{

Get-ChildItem -R

ecurse $path\AC\"#!001"\Spartan\User\Default\Tiles -force| ForEa

ch-Object {$_ | add-member -name "Owner" -membertype notepropert

y -value (get-acl $_.fullname).owner -passthru} | Sort-Object La

stAccessTime | Select Name,CreationTime,CreationTimeUtc,LastWrit

eTime,LastWriteTimeUtc,LastAccessTime,LastAccessTimeUtc,IsReadOn

ly,Mode,Length,attributes,Owner,Exists,DirectoryName | Export-Cs

v -Force -NoTypeInformation ${dest}:\tilesdirectory.csv

echo "`n `n Dumped all t

he tiles locations on: " ${dest}":\tilesdirectory.csv"

exit

}

elseIf($name -eq 5)

{

Get-ChildItem -Recurse $

path\AC\"#!001"\Spartan\History -force| ForEach-Object {$_ | add

-member -name "Owner" -membertype noteproperty -value (get-acl $

_.fullname).owner -passthru} | Sort-Object LastAccessTime | Sele

ct Name,CreationTime,CreationTimeUtc,LastWriteTime,LastWriteTime

Utc,LastAccessTime,LastAccessTimeUtc,IsReadOnly,Mode,Length,attr

ibutes,Owner,Exists,DirectoryName | Export-Csv -Force -NoTypeIn

formation ${dest}:\Allartefacts.csv

Get-ChildItem -Recurse $

path\AC\Spartan\User\Default\Favorites -force| ForEach-Object {$

_ | add-member -name "Owner" -membertype noteproperty -value (ge

t-acl $_.fullname).owner -passthru} | Sort-Object LastAccessTime

| Select Name,CreationTime,CreationTimeUtc,LastWriteTime,LastWri

teTimeUtc,LastAccessTime,LastAccessTimeUtc,IsReadOnly,Mode,Lengt

h,attributes,Owner,Exists,DirectoryName | Export-Csv -Force -Ap

pend ${dest}:\Allartefacts.csv

Get-ChildItem -Recurse $

path\AC\Spartan\User\Default\Recovery\Active -force| ForEach-Obj

ect {$_ | add-member -name "Owner" -membertype noteproperty -val

ue (get-acl $_.fullname).owner -passthru} | Sort-Object LastAcce

ssTime | Select Name,CreationTime,CreationTimeUtc,LastWriteTime,

LastWriteTimeUtc,LastAccessTime,LastAccessTimeUtc,IsReadOnly,Mod

e,Length,attributes,Owner,Exists,DirectoryName | Export-Csv -For

ce -Append ${dest}:\Allartefacts.csv

Get-ChildItem -Recurse $

path\AC\"#!001"\Spartan\User\Default\Tiles -force| ForEach-Objec

t {$_ | add-member -name "Owner" -membertype noteproperty -value

(get-acl $_.fullname).owner -passthru} | Sort-Object LastAccessT

ime | Select Name,CreationTime,CreationTimeUtc,LastWriteTime,Las

ix

tWriteTimeUtc,LastAccessTime,LastAccessTimeUtc,IsReadOnly,Mode,L

ength,attributes,Owner,Exists,DirectoryName | Export-Csv -Force

-Append ${dest}:\Allartefacts.csv

echo " `n `n Dumped all

the missing artefacts locations on: "${dest}":\Allartefacts.csv

"

exit

}

else

{

echo " Input not valid.

Please try again"

exit

}

}

else

{

echo " Username not existing. Pl

ease enter a valid username"

exit

}

}

}

else

{

echo " Drive is not existing/available. Please e

nter a valid drive letter (e.g: For the C:\ drive enter c or C)"

exit

}

x

Appendix D

Work separation

Part Name Written by
Chapter 1 Introduction Both
Chapter 2 Related work James
Chapter 3 Approach James
Chapter 4 Artefacts Analysis Both
Section 4.1 Database Guido
Section 4.2 Cache Guido
Section 4.3 Cookies Guido
Section 4.4 Bookmarks Guido
Section 4.5 Visited URLs Guido
Section 4.6 Download history Guido
Section 4.7 Web Notes Guido
Section 4.8 Cortana Guido
Section 4.9 Reading list Guido
Section 4.10 Tiles James
Section 4.11 Private browsing Guido
Section 4.12 Features not (yet) integrated in Project Spartan Guido
Chapter 5 Results James
Chapter 6 Conclusion Both
Chapter 7 Future work Both
Appendix A Spartan’s WebCache database Guido
Appendix B Download history Guido
Appendix C Powershell script James
Appendix D Glossary Guido

xi

Glossary

Active Directory Microsoft Active Directory is a directory service to keep
track of all entities within a domain. It can be compared to a the yellow
pages, but then within an IT domain, which keeps track of not only people
but also all equipment and such.. 18

ASCII American Standard Code for Information Interchange is a character-
encoding scheme. 12, v, vi

Bing Microsoft search engine for website on the Internet (like the Google search
engine, or Yahoo’s search engine).. 14

Cortana Name of the new Microsoft speech engine, derived from the artificial
intelligence character in the Microsoft Halo video game franchise.. 2, 7,
14, 16, 18

CSV Comma separated values, used to denote a format structure, which its
values are delimited by commas.. 15

Edge Name of the new Microsoft web browser engine, which is used in Project
Spartan, which is also to be named Edge when it releases.. 2, 4, 17, 22

Endianess Ordering of how bytes are read into memory, depending on the
computing architecture.. ii

ESE Extensible Storage Engine (ESE) is a database structure developed by
Microsoft, which they have implemented in some of their product (Inter-
net Explorer, Exchange, Active Directory, Desktop Search, and now also
Project Spartan). 5, 6, 7, 15, 18, 19, 21, 22, i, iv

Exchange Microsoft Exchange is a mail server, with calendaring and contact-
ing support, which can also be integrated into Microsoft Active Directory..
18, 22

HTML Hyper Text Markup Language, a markup language mostly used to
display web page content when using a browser.. 8

IE Common abbreviation for Microsoft Internet Explorer.. 2, 3, 4, 5, 6, 8, 15,
16, 18, 19, 21, 22, i

xii

InPrivate Microsoft private browsing technology, to browse without leaving
traces on the system the browser runs on (like Google Chrome’s Incognito,
or Firefox’s Private Windows.. 15, 22

JET Joint Engine Technology, the former name of the ESE database structure..
5

Metadata Term used to denote descriptive information about data. Therefore,
metadata is not the actual data itself, but offers some insight into what
the actual data may contain.. 7, 11

PowerShell A Microsoft scripting language, which offers Cmd-Lets to control
the inner working of compatible software as well.. 19

SpartanLeftovers A custom designed script developed by the authors to au-
tomate some of Project Spartan’s artefacts.. 19

Trident Name of the Microsoft web browser engine used in Internet Explorer..
2, 3

URL Uniform Resource Locator, used to denote links, or addresses, of remote
entities (systems).. 5, 11, 15

Web Notes A new feature in Project Spartan one can use to annotate certain
things on a web page and then save it for later.. 12, 13, 18

xiii

	Introduction
	Scope, motivation and research question

	Related work
	Browser forensics
	Structure of Internet explorer

	Approach
	Artefacts Analysis
	Database
	Cache
	Cookies
	Bookmarks
	Visited URLs
	Download history
	Web Notes
	Cortana
	Reading list
	Tiles
	Private browsing
	Features not (yet) integrated in Project Spartan

	Results
	Project Spartan vs. Internet Explorer (similarities and differences)
	Automated tool

	Conclusion
	Future work
	Bibliography
	Appendices
	Spartan's WebCache database
	Download history
	Powershell script
	Work separation
	Glossary

