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Abstract—The analysis of memory during a forensic
investigation is often an important step to reconstruct
events. While prior work in this field has mostly concen-
trated on information residing in the kernel space (process
lists, network connections, and so on) and in particular
on the Microsoft Windows operating system, this work
focuses on Linux user space processes as they might also
contain valuable information for an investigation. Because
a lot of process data is located in the heap, this work
in the first place concentrates on the analysis of Glibc’s
heap implementation and on how and where heap related
information is stored in the virtual memory of Linux
processes that use the Glibc heap implementation. Up to
now, the heap was mostly considered a large cohesive
memory region from a memory forensics perspective,
making it rather hard manual work to identify relevant
information inside. We introduce a Python class for the
memory analysis framework Rekall that is based on our
analysis results and allows access to all chunks contained
in the heap and their meta information. Further, based on
this class, six plugins have been developed that support
an investigator in analyzing user space processes: Four of
these plugins provide generic analysis capabilities such as
finding information/references within chunks and dumping
chunks into separate files for further investigation. These
plugins have been used to reverse engineer data structures
within the heap for user space processes, while illustrating
how such plugins ease the whole analysis process. The
remaining two plugins are a result of these user space
process analyses and are extracting the command history
for the zsh shell and password entry information for the
password manager KeePassX.

This report is an extended version of our paper pub-
lished at DFRWS USA (Block and Dewald, 2017).

I. INTRODUCTION

As the memory represents the current state of a
running system, it contains for example information
about browser history, entered commands, active network

connections, loaded drivers as well as active processes
and hence allows detailed insights into previous activi-
ties.(Ligh et al., 2014) While much of this information
is located in the kernel space and can be examined with
existing solutions for various operating systems such as
Rekall (Google Inc, 2016c) and Volatility (Foundation,
2016), there is also a lot of information located in
the user space that might be of interest in a forensic
investigation, too. The heap of a user space process
for example is typically a rich source of various kinds
of data and, depending on the concrete application,
might contain credentials, IP addresses/DNS names or a
command history. However, this information is, at least
in the context of Linux, not yet easily extractable.

To efficiently and reliably identify and extract this
information, the investigator requires a view of the
heap that is the same or at least similar to the one
the process has: Knowledge about where the data is
located, what kind of data is stored at a specific position
and which amount of memory a specific data portion
occupies. Otherwise, the investigator can only work with
the heap as one large memory region, with all pieces of
information located inside without any known structure.

A. Motivation

In the context of Linux processes, the focus of user
space analysis was in the past limited to searches for spe-
cific patterns within the complete process memory or the
whole heap/stack. For example, in order to reconstruct
the command history for the Linux bash shell, Rekall’s
bash Google Inc (2016a) plugin searches the heap for a
hashtag followed by a Unix timestamp in string format
(e.g. #1471572423) (Ligh et al., 2014, 630 ff.). If however
the information of interest is not marked in an easily
detectable way, a simple pattern matching will fail.

When taking a scenario in which the investigator
identifies a certain string in memory and tries to identify



references to it, this search might fail even though there
are (indirect) references. This could be the case if the
string is part of a struct or object and is not located at
the beginning, while the pointer of interest references
the struct instead of the string directly (see Section V-B
for an example). To be able to find those references, the
beginning of that struct must be known, which requires
knowledge about the size of its fields and the location of
the string within that struct. However, these details are
normally not available in a black box analysis.

B. Contributions

In this work, we make the following contributions:
• We analyzed the Glibc heap implementation and

summarize the information that enables an in-
vestigator to perform a manual heap analysis or
implement his or her own tool for this purpose.
In particular, we explain how heap structures are
arranged and where they are typically located in
memory (Section II-D).

• We demonstrate that some chunks might hide some-
where in the memory, for which we propose an
algorithm to retrieve them (Section III-F).

• These insights have been used to develop a Python
class called HeapAnalysis, which can be used to
implement specific heap analysis plugins.

• Based on this class, we developed plugins that
support the investigator in analyzing the heap and
its chunks.

• We explain how data of user space processes can
be analyzed by applying these plugins to gather
relevant information (similar to the analysis done
by Cohen (2015) for a Windows user space pro-
cess).

• A result from this analysis are two further plugins:
The first one gathers all executed commands from
the heap of a zsh shell (Version 5.2) process and
the second extracts the title, username, URL and
comment field of all retrievable password entries
from the heap of the password manager KeePassX
(version 0.4.3).

The HeapAnalysis class and all mentioned plugins
support x86 and x64 architectures.

C. Outline

This work is structured as follows: Section II covers
details about the heap of user space processes that use
Glibc’s heap implementation. In Section III, we provide
an overview of the developed heap analysis plugins,

Section IV covers the evaluation of those plugins, Sec-
tion V provides a detailed analysis of applications, and
Section VI concludes this paper.

D. Related Work
Cohen (Cohen, 2015, p. 1138) states that “the analysis

of user space applications has not received enough
attention so far”. This not only underlines the motivation
of this work, but also the reason for which there is
not much literature about that specific topic. Existing
literature in the field of Linux memory forensics mainly
covers kernel related topics such as the work of Urrea
(2006), Case et al. (2010) and Ligh et al. (2014).

The few exceptions are the work by Leppert (2012)
and Macht (2013), who both focused on the Android
operating system of mobile devices, which is Linux
based, and analyzed applications and their heap data.
However, their analysis concentrated primarily on seri-
alized Java objects contained in the heap and not on
the way heap objects are managed. Other exceptions
are the already existing plugins cmdscan Google Inc
(2016b) and bash Google Inc (2016a), which extract
the command history from Windows’ cmd and Linux’s
bash shell, respectively. These plugins, however, leverage
the fact that in those cases it is possible to identify the
information by only looking at the heap as one large
memory region. Another related work is the analysis of
Notepad’s heap (Ligh et al., 2014, p. 223). This is to the
best of our knowledge the only example that uses any
heap details and, as most of the prior work, is related to
Windows too.

Outside the scope of forensics, there has been fun-
damental research on the heap and, in particular, on
the heap of Linux processes and how it is managed.
Especially the research by Ferguson (2007) serves a solid
understanding about Glibc’s heap implementation. This
previous research, however, focused more on the ways
the heap can be exploited and hence does not provide
enough information to reliably gather all relevant infor-
mation from the heap in a memory forensics scenario.

The work of Cohen (2015) is the first to approach this
research gap with a set of analysis tools for the Windows
Operating system. While there are some similarities
between Windows’ heap implementation and the one
from Glibc (for example in both cases an allocated chunk
is preceded by a struct containing at least the chunk’s
size), they differ in the details.

II. GLIBC ANALYSIS

In this section, we present the results of our analysis of
the Glibc heap implementation from a memory forensics



perspective.

A. Different Heap Implementations

There are various heap implementations available,
most of them used in the context of a certain operat-
ing system or application. The reasons that there are
multiple implementations are amongst others an increase
in functionality requirements over the last decades (e.g.
support for multi-threading (Gloger, 2006)) and the
pursuit for performance improvements (Ghemawat and
Menage, 2015). The following list shows some of those
implementations.

dlmalloc An early implementation, which was also the
basis for ptmalloc2.

ptmalloc2 Improved implementation of dmalloc, which
was used as a basis for Glibc.

Glibc malloc The implementation covered in this work.
jemalloc Mostly used in FreeBSD and Mozilla products.
tcmalloc Mainly used for Google’s browser (Chrome).
Low Fragmentation Heap Part of the heap implemen-

tation used for Windows Vista and later.

The reason why most of the heap implementations
contain the word malloc in it, is because of the same
named function. This function is the core of any of those
implementations as it is responsible to allocate a given
amount of bytes from the heap and to return it to the
caller. The latter part is realized with a pointer to that
memory space that the caller can use to access and store
data in it. Those implementations are hence sometimes
also referred to as memory allocators.

One of the first implementations was dlmalloc by
Doug Lea (Lea, 2006). As it does not support multi-
threading, it was improved by Wolfram Gloger with
ptmalloc2 (Gloger, 2006). ptmalloc2 is used in many
Linux/Unix distributions but may also be used in appli-
cations compiled under mingw or cygwin. (Cohen, 2015,
page 1139)

As the usage of a certain heap implementation is
not bound to a specific operating system, a user space
process can easily choose to use a different one (Cohen,
2015, page 1139). This might either be realized by using
one, offered by the operating system, or by already
including such an implementation within the application
(e.g. the case with Mozilla products such as Firefox).
Such processes might then however not be analyzable
using the information or tools introduced in this work.

Microsoft uses yet another implementation which has
already been analyzed by Valasek (2010). Their design
consists of a back-end and front-end allocator. The back-
end allocator mainly initializes the heap and provides

large memory regions while the front-end allocator is
responsible for splitting those large regions in smaller
ones and managing them. The front-end allocator im-
plementation, used in Windows Vista and later, is called
Low Fragmentation Heap and is only used if the im-
plementation decides it is necessary. Otherwise, only
the back-end allocator will serve the application with
memory.

The implementation examined in this work is Glibc
version 2.23 (Free Software Foundation Inc., 2016),
which is based on Wolfram Gloger’s ptmalloc2 (Gloger,
2006). As written in a comment of the Glibc source code,
their implementation of malloc and further functions
have been substantially changed and do not share many
similarities anymore (see line 22 in Listing 34). The
following Section II-B will give a high level overview
of the most important objects and structs used in Glibc’s
heap implementation.

B. Glibc Heap Overview

This section provides a high level overview of the
most important objects and structs used in Glibc’s heap
implementation. Figure 1 shows a potential heap layout
of a running process, with a focus on references between
the various elements. Starting from the lowest and most
important level, a chunk contains the actual user/process
data, which has been allocated e.g. explicitly via a
malloc call or implicitly via a new call in the context of
class instantiation. Those chunks are located in a certain
memory region.

Given for example the first part of a C program shown
in Listing 1 which uses the Glibc, chunk_pointer

represents a pointer to a chunk somewhere in one of
these memory regions or more precisely in one of the
Allocated Chunks areas and the memset call fills the
chunk’s complete available space with the character A.

This means that the memset call results in a long list
of A characters residing somewhere in an area marked as
Allocated Chunks and which belong to a certain chunk.
(It should be noted that there are normally no fixed
areas in which allocated or freed chunks are located, but
this example has been chosen for the sake of an easy
introduction.)

Besides allocated chunks that represent in essence
chunks currently in use, there are also Freed Chunks that
represent chunks which were in use but no longer are.
The transition from allocated to freed is normally done
via the free function call. When a chunk gets freed, the
chunk itself, or at least its data, stays in most scenarios
at the same location as before, and its data is (beside
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Fig. 1: Glibc Heap Overview

1 char* chunk_pointer;
2 chunk_pointer = malloc(100);
3 memset(chunk_pointer, 65, malloc_usable_size(chunk_pointer));

Listing 1: Simple malloc example

some modifications which are explained later on) not
deleted or overwritten. When however a new chunk is
requested, whose size fits in the freed chunk, this freed
chunk might get used for the new chunk and hence, the
old information is overwritten.

At the highest level are arenas, which represent in
essence heap space belonging to one or multiple threads
while each arena has its own memory regions containing
allocated and freed chunks from the associated thread(s).
While an arena does not have a direct link to each
memory region or to allocated chunks (see Figure 1),

there are other connections like pointers to freed chunks
(will be covered in Section II-C1 on the facing page),
the next arena and the top chunk. This special chunk
represents the remaining free space for a given arena. If
a new chunk is requested and no freed chunk is available
that could serve the request, the new chunk is created
from the necessary amount of space taken from the top
chunk (see Section II-C5 for more details or Section II-E
for special scenarios). Besides a connection to some
chunks, each arena contains also a pointer to the next
arena while the last arena points to the first one located



in the mapped Glibc library (see also Section II-D1).
One level beneath arenas are the heap info structs.

Despite their name they do not describe the whole heap
of a process or the part of the heap associated with
a thread but only a part of a mapped memory region
(described by an vm area struct struct) they belong to.
More specifically, each mapped memory region belong-
ing to an arena (except for the main arena) contains,
at least at the beginning of the memory region, one
instance of the heap info struct, which holds the size
of the current heap part in that memory region. Besides
the size, each heap info struct holds a pointer to the
associated arena (malloc state struct) and a pointer to
the previous heap info struct within the same arena. In
that way, all of them are linked together.

Excluded from arenas and heap info regions are
MMAPPED chunks. As can be seen in Figure 1, there
are no links from MMAPPED chunks to any other
structures or from heap structures to them. Those chunks
are normally created when an allocation request exceeds
a given threshold (typically 128 ∗ 1024 bytes on x86
architectures). In that case, the chunk is not included
in the main heap or any memory region belonging to
another arena, but the operating system is asked for an
exclusive memory region just for that chunk (via the
mmap API call), in which the chunk is placed.

While memory space for the main heap is acquired
using the brk system call, MMAPPED chunks and also
all thread arenas are using the mmap system call to
acquire memory regions for their chunks. That means,
the main heap is located in the area marked as Heap in
Fig. 2 and MMAPPED chunks and the data from thread
arenas, respectively, in the area marked as Mmap Region
in Fig. 2.

Chunks and all other mentioned objects are described
and realized via structs. For each connection which is
observable in Figure 1, there is an corresponding pointer
in the relevant struct to the linked struct. Those structs
and connections will be examined in more detail in the
next section.

C. Glibc Heap Details

The following Sections will give a low level expla-
nations of the objects, structs and concepts described
in Section II-B on page 3. The information provided in
this section is based on the work of Ferguson (2007),
but takes a deeper look in each topic. Further details,
especially in the context of memory layout, are covered
in Section II-D on page 14.

Kernel

Stack

Heap

.data

.bss

Mmap Region

0xFFFFFFFF

0x00000000

0xC0000000

.text

3 GB
User 

Space

TASK_UNMAPPED_BASE

Fig. 2: Process memory layout

1) Arena and Heap Info structs: Arenas are realized
via malloc state structs. The struct itself and the al-
ready mentioned relations between the arena and chunks
can be seen in more detail in the Fig. 3 on the next
page. The malloc state struct on the left side, contained
in the mapped Glibc library, is called main arena as
it is used by the first/main thread thread (see also
NON MAIN ARENA flag mentioned in Section II-C2 on
page 7). It holds, like all arenas, pointers to freed chunks
but none to allocated chunks. The relevant members in
this context are fastbinsY for fastbin chunks and bins
for bin chunks. As can be seen however, the arena does
not hold pointers to all freed chunks as they contain
further links to subsequent freed chunks themselves. The
bins and top chunk (pointed to by the top member) are
explained in more detail in Section II-C4 on page 11.

Another relevant member of the malloc state struct is
system mem. It holds the size of the whole arena, which
means all memory regions containing any chunks be-
longing to that arena. In the case of the main arena, this
does not include the bytes allocated by the malloc state
struct itself, in all other cases their size is included
(see Section II-D1 on page 14 for further details). As
the MMAPPED chunks are not part of any arena, their
size and memory regions are hence not part of the
system mem value of any arena.

As described in Section II-B on page 3 and shown
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in Fig. 1 on page 4, all arenas are linked together. This
is on the one hand done via the next member, which
realizes a circular linked list where each arena points to
the next arena and the ”last” arena points to the first one
(main arena contained in the mapped Glibc library), and
on the other hand with the next free member, pointing
to freed arenas (e.g. from dead threads).

The further fields of the malloc state struct are not
important in the context of this work and hence will be
only shortly covered:

mutex This member is used during runtime to ensure
exclusive access to the malloc state struct during
modification operations and hence prevents simulta-
neous access.

flags Holds flags e.g. indicating whether or not there are
any fastbin chunks or any arena corruption has been
detected during runtime.

last remainder If a freed chunk is used for an allocation
but is bigger than the requested size, the chunk is split
and the remaining bytes form new chunk called the
last remainder. As this chunk is also pointed to by
the unsorted bin (see Section II-C4 on page 11), this
field adds no new information from a memory analysis

perspective.
binmap This field holds the information which bins are

empty and which do not. It is realized via 4 unsigned
integers (= 128 bit), where each bit represents one bin
(see also Section II-C4 on page 11). The purpose of
this field are performance reasons, as traversing all
bins one after the other in order to find freed chunks
is more time consuming than just checking bits.

attached threads This member was introduced in Glibc
Version 2.23 and counts the number of threads that
are using this arena. As there is normally a maximum
number of arenas, new threads not always get their
own arena but start to share them with other threads.
In these cases, this counter is accordingly increased
or decreased if a thread dies.

max system mem Is used in the context of the sys-
tem mem member, but serves no further valuable
information for this work.

The number of arenas corresponds in principle with
the number of threads. But their quantity is limited and
the maximum possible amount of arenas depends on
certain factors. Listing 2 illustrates the relevant code
from the malloc.c source file, explaining those factors.



One important function in this case is get_arena2 ,
which is responsible for deciding whether or not a new
arena is created. The decision depends on the one hand
on the existence of free arenas that can be used for the
current request (line 7 and 8) and on the other hand on
the amount of already existent arenas (lines beginning
at 8). If there are free arenas, those are used to serve
the current request for a new arena. If there are no
free arenas and the current number of arenas does not
exceed the value of narenas_limit (line 24), a new
arena is created (line 26). The value of narenas_limit
is calculated with the macro NARENAS_FROM_NCORES

(line 28) and depends on the architecture and the number
of cores (line 14). In the case of 32 bit systems the value
of narenas_limit is the amount of cpu cores times
two and for 64 bit architectures times eight.

There is however one exception, which results from
the two if statements in lines 10 and 24. The value of
mp_.arena_test is calculated with a static core num-
ber of 1. This means, the if statement in line 10 only
returns true, if the current amount of arenas is already
bigger than the result from NARENAS_FROM_NCORES

(1) . Only in this case, narenas_limit is set to
a value other than zero. As long as narenas_limit

is zero, the if statement in line 24 evaluates to true
for almost all numbers, as the operation 0 − 1 results
in the largest possible number for that data type (as-
suming an unsigned type). So for a system with one
CPU core, narenas_limit is only set to a non-
zero value if the number of arenas already exceeded
the value of NARENAS_FROM_NCORES (1) and hence,
the maximum number of arenas is 3 for 32 bit and
9 for 64 bit architectures. With more cores than one,
NARENAS_FROM_NCORES dictates the maximum num-
ber.

There is however a third setting which could influence
the maximum number of arenas. The function mallopt
allows to change members of the malloc par struct
at runtime. This struct’s members are used to control
certain global settings, more specifically this is done via
the only instance of that struct, called mp and located in
the mapped Glibc library. Amongst the members is also
the field arena max, which allows to set the maximum
amount of arenas, independent of architecture or number
of CPU cores.

While the arena describes the whole memory space
related to a certain thread, the heap info struct describes
only a specific memory region, containing at least a
subset of all chunks belonging to the associated arena.
Fig. 4 on the next page shows the struct and its members.

As can be seen in Fig. 1 on page 4 or in more detail in
Fig. 5 on page 16, each heap info instance has a pointer
to the associated arena and to the previous heap info
instance that also belongs to that arena. The arena pointer
is stored in the ar ptr member and the reference to the
previous heap info in the prev member. In contrast to
an arena’s next field however, the prev pointers do not
realize a circular linked list. Instead, the prev field of the
first heap info is simply null.

Similar to an arena’s system mem member, the
heap info struct contains a size field, which defines the
amount of bytes that belong to this heap region. This
size normally ranges from the beginning of the memory
region described by the vm area struct struct until its
end. The two left members are mprotect size, which is
only used in the context of shrinking or growing a heap,
and pad which simply ensures, that data following the
heap info struct is aligned.

2) Allocated Chunks: As explained in Section II-B
on page 3, allocated chunks contain the user/process
data and are located somewhere in a memory region.
There are no pointers from any other heap related struct,
referencing allocated chunks.

A chunk in general is described by the malloc chunk
struct which marks the beginning of each chunk and
contains the following fields:

prev size If the previous chunk is freed, it contains the
previous chunk’s size.

size The distance from the beginning of the current
chunk until the next chunk in bytes.

fd Forward link, pointing to the next freed chunk.
bk Backward link, pointing to the previous freed chunk.
fd nextsize Points to the next chunk with a bigger size.
bk nextsize Points to the next chunk with a smaller size.

This struct is located at the beginning of each chunk
but not all fields are used for every chunk. In the case of
allocated chunks, primarily the size field is used for its
intended purpose. Only if the previous chunk is a freed
chunk, is the prev size field used. The relevant member
for this sub section is the size field. All other members
of the malloc chunk struct are only relevant for freed
chunks and explained in more detail in Section II-C4 on
page 11. The size field contains the distance from the
beginning of the current chunk until the next chunk in
bytes (see the appropriate subsections in Section II-D2
on page 15 for calculations regarding chunk size and
data portions). As already explained by Ferguson (2007,
section 0.2.1), this field not only contains size informa-
tion but the lower 3 bits of the size are used as special



1 static mstate
2 internal_function
3 arena_get2 (size_t size, mstate avoid_arena)
4 ...
5 static size_t narenas_limit;
6
7 a = get_free_list ();
8 if (a == NULL)
9 ...

10 else if (narenas > mp_.arena_test)
11 {
12 int n = __get_nprocs ();
13
14 if (n >= 1)
15 narenas_limit = NARENAS_FROM_NCORES (n);
16 else
17 /* We have no information about the system. Assume two
18 cores. */
19 narenas_limit = NARENAS_FROM_NCORES (2);
20 }
21 ...
22 size_t n = narenas;
23 ...
24 if (__glibc_unlikely (n <= narenas_limit - 1))
25 ...
26 a = _int_new_arena (size);
27 ...
28 #define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8))
29 ...

Listing 2: Calculation of Arena threshold

struct heap_info

ar_ptr

size

*prev

pad

mprotect_size

Fig. 4: heap info struct

flags, indicating whether or not
• the previous chunk is an allocated or fastbin chunk

or a freed chunk belonging to a bin. If the previous
chunk is freed (but not a fastbin chunk), the least
significant bit (called PREV INUSE) is set.

• this chunk is an MMAPPED chunk. If it is, the
second least significant bit (called IS MMAPPED)
is set.

• this chunk belongs to the main arena. If
not, the third least significant bit (called
NON MAIN ARENA) is set.

The reason that these three lower bits can be used as
flags and are not required to specify the chunk’s size

is a size alignment. This means, that the size cannot
have arbitrary values but is typically a multiple of 8 for
32 bit and a multiple of 16 for 64 bit architectures. The
relevant macros which are used to get an aligned size are
request2size and checked_request2size (see
Listing 3). As can be seen in the macro, it not only aligns
the size in the sense of ensuring it is a multiple of 8 or 16,
but also always returns a higher value than given (even
if the given value is already aligned). The reason for this
is that it already takes into account, that the chunk size
includes also struct information and hence increases the
user request by that size, in order to serve the user the
requested space for its data (see Section II-D2 on page 15
for more details). For example, when requesting 16 byte
of data on a 32 bit architecture, this value is already
perfectly aligned, but request2size returns 24.

Regarding those bits, the following additional state-
ments can be made:

• An MMAPPED chunk has always
the IS MMAPPED bit but never the
NON MAIN ARENA or
PREV INUSE bit set (see also Section II-C3 on
the facing page).

• A freed bin (not fastbin) chunk has neither the
IS MMAPPED nor NON MAIN ARENA bit set. It
furthermore has normally always the PREV INUSE



bit set, as neighbored freed bin chunks are consol-
idated (see also Section II-C4 on page 11).

• A freed fastbin chunk residing in a thread arena
keeps its NON MAIN ARENA bit, in contrast to a
freed bin chunk (see Section II-C4 on page 11).

• A chunk following a freed bin chunk has no
PREV INUSE bit set, a chunk following a freed
fastbin chunk however has this bit still set (see
Section II-C4 on page 11).

• As stated in the comments of malloc.c regarding the
PREV INUSE bit, the “very first chunk allocated
always has this bit set, preventing access to non-
existent (or non-owned) memory” (see lines 1187
and 1188 in Listing 35).

• The top chunk always has the PREV INUSE bit set
(see Section II-C5 on page 14).

The smallest size for a chunk is defined in malloc.c
and mainly depends on the architecture. Listing 3 shows
an excerpt of the relevant lines of code from that source
file.

The macro MIN_CHUNK_SIZE holds in fact the
minimal size a chunk could have. It is defined by
taking the number of bytes from the beginning of the
malloc_chunk struct until the fd_nextsize mem-
ber (see Sectionsec:allocatedChunks). As prev size and
size are normally unsigned integers (4 byte on 32 bit
and 8 byte on 64 bit architecture) and fd and bk are
pointers, the minimal chunk size on a 32 bit architecture
is typically 16 and for a 64 bit architecture 32 byte.
However, to ensure alignment, it is recalculated and
assigned to MINSIZE , which is the internal relevant
variable and keeps the smallest size a chunk is allowed
to have. On this scenario this recalculation does not
change the calculated values, so it stays with 16 and 32
byte, respectively. It should be noted that these values
represent the default behavior and may differ e.g. when
INTERNAL_SIZE_T is changed at compile time.

Line 27 of Listing 3 shows the relevant macro
which enforces the minimum chunk size. On a
chunk allocation, function malloc uses the macro
checked_request2size and hence implicitly macro
request2size to get the final size used for the
allocation. As can be seen in lines 28 and 29 of Listing 3,
if the requested size is too small, the size to allocate is
set to MINSIZE . This is e.g. the case when malloc is
called with a size of zero.

Regarding the maximum chunk size, it would be
theoretically possible to allocate a chunk with the size
232 on a 32 bit architecture as the size member is here
normally a four byte integer. It is however restricted by

the macro from line 21 in Listing 3, which is used by
checked_request2size . The theoretically maximum
amount of bytes for a chunk allocation is thus subtracted
by 2∗MINSIZE which would typically result in 232−32
byte on a 32 bit architecture. An allocation request must
hence typically be smaller than 232 − 32 on a 32 bit
architecture. When now using the maximum value that
can be requested without generating an error (232−33) it
results in the maximum possible chunk size of 232 − 24
(see line 30 of Listing 3).

Despite the maximum size defined in Glibc, a chunk
with that size will most probably never be allocated. The
reason for that is the limitation of the virtual address
space and the fact that a large percentage of it is typically
reserved for the kernel (typically about 1 GB out of 4 GB
on a 32 bit architecture). But even if the kernel would
not take a large percentage of the memory space, such
an allocation request would ask the kernel for nearly
the whole virtual address space. Even if the operating
system would theoretically be able to serve that space
in the sense of physical space, the virtual address space
is still limited and as the process itself needs a certain
amount of memory space for its code and libraries (if
nothing else, at least the Glibc library) it will not be
able to fulfill this request.

3) MMAPPED Chunks: MMAPPED chunks are in
essence allocated chunks, that exceed a given threshold
in size. Their name originates from the fact, that a
dedicated memory region is requested for each chunk
from the operating system using the API call mmap.
Most probably for that exact reason, they are called
MMAPPED regions in the mallinfo output (see Sec-
tion IV-A on page 35). The threshold, which defines
if the new allocation request should be served with
a mmap call, is controlled with the malloc par field
mmap threshold, which is in the beginning normally
128 ∗ 1024 and can be set manually by changing the
mmap threshold value during runtime (mp ; see also
Section II-C1 on page 5). This is however not the
only way this value might change. As long as the
malloc par member no dyn threshold is 0, the threshold
might change dynamically during runtime. (It is for
example set to 1, if the mmap threshold is set manually
using the mallopt function.) If not, the threshold is
adjusted each time an MMAPPED chunk is freed, as
can be seen in Listing 4. The threshold does how-
ever only increase (line 2956), and not exceed a given
threshold (line 2957). That means, that there might
be MMAPPED chunks with a size smaller than the
current value of mp_.mmap_threshold . The maxi-



1 ...
2 /* The corresponding word size */
3 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
4 ...
5
6 #define MALLOC_ALIGNMENT (2 *SIZE_SZ)
7 ...
8
9 /* The corresponding bit mask value */

10 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
11 ...
12
13 /* The smallest possible chunk */
14 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
15
16 /* The smallest size we can malloc is an aligned minimal chunk */
17
18 #define MINSIZE \
19 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ˜MALLOC_ALIGN_MASK))
20 ...
21 #define REQUEST_OUT_OF_RANGE(req) \
22 ((unsigned long) (req) >= \
23 (unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE))
24
25 /* pad request bytes into a usable size -- internal version */
26
27 #define request2size(req) \
28 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
29 MINSIZE : \
30 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ˜MALLOC_ALIGN_MASK)
31
32 /* Same, except also perform argument check */
33
34 #define checked_request2size(req, sz) \
35 if (REQUEST_OUT_OF_RANGE (req)) { \
36 __set_errno (ENOMEM); \
37 return 0; \
38 } \
39 (sz) = request2size (req);

Listing 3: Chunk size calculation

mum value for the dynamic threshold is defined by
the DEFAULT_MMAP_THRESHOLD_MAX variable, which
is typically 524288 for 32 bit and 33554432 for 64 bit
architectures.

The mp_.mmap_threshold value can also be set
manually via the mallopt function. The maximum value
it can be set to is typically the same as for the dynamic
threshold (see Section VII-B on page 49), but it can be
set to an arbitrary low value like 1. When doing that, this
means that all allocations are served with MMAPPED
chunks, but does not lead automatically to chunks with
a size of 1 or MINSIZE (see Listing 3). The reason
for that is the mmap API call, which returns memory
space in terms of pages. As it returns only a multiple of
page size, the minimum amount of memory served by
this function is one page (which is at least 4096 byte).
Because the whole page is reserved for that one chunk
(a follow up malloc call would again end in a mmap call,
requesting more pages for the new chunk), there is no

reason to not assign the whole space to this one chunk,
which is why the size of an MMAPPED chunk is always
a multiple of page size and at least as large as one page
of the underlying operating system (see Section II-D3 on
page 17 for further details). This can also be seen in the
code excerpts in Listings 5 and 6. Lines 2316 and 2318 in
Listing 5 are responsible for setting the new MMAPPED
chunks’s size (nb is the size requested by the malloc
call) and do that by the usage of the ALIGN_UP macro
defined in line 67 in Listing 6.

Another characteristic of MMAPPED chunks is their
usage of flags. While all MMAPPED chunks have
the IS MMAPPED flag set, none of them use the
PREV INUSE or NON MAIN ARENA flags. Further-
more, there are no freed MMAPPED chunks, which is
why there is no need for the PREV INUSE flag and
hence leaves the prev size member and all freed chunk
pointers unused. When an MMAPPED chunk is freed,
the whole memory space it is allocating is removed from



2955 if (!mp_.no_dyn_threshold
2956 && p->size > mp_.mmap_threshold
2957 && p->size <= DEFAULT_MMAP_THRESHOLD_MAX)
2958 {
2959 mp_.mmap_threshold = chunksize (p);

Listing 4: Glibc 2.23(malloc/malloc.c): Dynamic MMAP Threshold adjustment

2315 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2316 size = ALIGN_UP (nb + SIZE_SZ, pagesize);
2317 else
2318 size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize);

Listing 5: Glibc 2.23(malloc/malloc.c): Calculation of minimum MMAPPED Chunks size

57 /* Align a value by rounding down to closest size.
58 e.g. Using size of 4096, we get this behavior:
59 {4095, 4096, 4097} = {0, 4096, 4096}. */
60 #define ALIGN_DOWN(base, size) ((base) & -((__typeof__ (base)) (size)))
61
62 /* Align a value by rounding up to closest size.
63 e.g. Using size of 4096, we get this behavior:
64 {4095, 4096, 4097} = {4096, 4096, 8192}.
65
66 Note: The size argument has side effects (expanded multiple times). */
67 #define ALIGN_UP(base, size) ALIGN_DOWN ((base) + (size) - 1, (size))

Listing 6: Glibc 2.23(include/libc-internal.h): Definition of ALIGN DOWN and ALIGN UP

the process space and returned to the operating system.
Because there are no pointers from the bins or any structs
to MMAPPED chunks and also no connection between
themselves, each MMAPPED chunk stands alone and is
only referenced by the returned pointer for the allocation
call.

4) Freed Chunks and Bins: When talking about freed
chunks in more detail, first the concept of bins needs to
be understood. A bin can be seen as a container for freed
chunks and bins always belong to a specific arena. To
put it a bit more technically, they are in essence an array
of pointers residing in the malloc state struct (arena). If
a chunk is freed within a certain arena, it gets added to
a bin of that arena by setting the bins pointer to that
chunk. Furthermore, it gets added only to a bin it fits in,
as almost all bins allow only a defined size or size range.
There are two types of bins: fastbins and emphnormal
bins (which are referenced in this document simply as
bin). The second type is again split up in two types:
small bins and large bins.

Based on that information and going a step further,
there are basically four different kinds of free chunks to
distinguish:

Small Bin chunks Are freed chunks in a size range from
16 to 508 bytes on a 32 bit and 32 to 1008 byte on a

64 bit architecture belonging to a bin.
Large Bin chunks Are freed chunks in a size range

from 512 byte on 32 bit and from 1024 byte on 64
bit architectures until the maximum size a chunk can
have (belong also to a bin).

Fastbin chunks Are freed chunks in a size range from
16 to a maximum of 80 byte on 32 bit and from 32 to
a maximum of 160 byte on 64 bit architectures (they
belong to a fastbin).

Top chunks This chunk is not part of any bin, present
exactly once in each arena and represents the left free
space of its arena. See Section II-C5 on page 14 for
more details.

A differentiation on those chunk types is especially
important when trying to gather user data out of them
(see subsections in Section II-D on page 14).

The first bin is neither part of the small nor large
bins but contains freed chunks of arbitrary size without
any size order. It is used for performance reasons as
integrating a chunk in the according bin in the right
position takes more operations than adding it to the
unordered bin. Bins containing chunks with varying sizes
are normally ordered by size, so for a new chunk the
right position must be found and furthermore not only
the new chunks pointers set, but also the pointers of



the chunk before and after it. So if a new allocation
is following a free call and a fitting chunk can be
found in the arbitrary bin, some bin modifications and
comparisons have been saved. Every chunk that gets
freed (except for chunks being placed in fastbins) is at
first placed in the unordered bin. The free function itself
does not place any chunks into small or large bins. This
is done by the malloc function on its next call. While
testing each chunk in the unordered list for fitting the
current allocation request, all other chunks are placed in
the corresponding bin.

As mentioned earlier, bins are split up into small and
large bins. More precisely there are 62 small and 63
large bins, where the small bins contain only chunks of
the same size and the large bins contain chunks with
a size in a specific range. The exact distribution can be
seen in the comment in Listing 7 which is taken from the
Glibc source code. This output is however not entirely
correct. On the one hand, there is a misleading value
regarding number of small bins. The comment speaks
of 64 bins, each 8 bytes apart from its neighbor, but
there are actually only 62 as bin 0 does not exist (this
is also stated in the comment on line 1466, but only a
mathematical issue as the first bin in the malloc state’s
bins array is definitively used) and the first bin is used
for the arbitrary sized chunks. The second deviation
concerns each first bin of a given size range starting
with bin 112 and will be explained in more detail in the
following paragraphs.

Looking at the small bins, they begin with bin 2 (when
counting from one forward) and a size of 16 and go up
to bin 63 with a size of 504, while each bin is 8 bytes
apart from its neighbors and contains only chunks of
the same size. It should be noted that the information
from Listing 7 and in this and following paragraphs only
apply for 32 bit architectures. The number of bins does
not change however for other architectures, only the size
of chunks placed in there are increased (for example are
the small bins 16 bytes apart on 64 bit architectures).

Starting with bin 64, chunks can have sizes in a given
range, which is noted in the last column in lines 1453 to
1457 in Listing 7. So the first large bin can contain freed
chunks with sizes from 512 - 568 byes. All following
bins until bin 96 each contain chunks of the same size
range and are 64 bytes apart from their neighbors. This
pattern continues according to the remarks until bin 112.
While bins 112 till 119 should normally all contain
chunks in a size range of 4096 byte, the first bin (bin 112)
does only include chunks with a size range of 1536 byte
(bins 113 till 119 behave as expected). This deviating

1449 Bins for sizes < 512 bytes contain chunks of
all the same size, spaced

1450 8 bytes apart. Larger bins are approximately
logarithmically spaced:

1451
1452 64 bins of size 8
1453 32 bins of size 64
1454 16 bins of size 512
1455 8 bins of size 4096
1456 4 bins of size 32768
1457 2 bins of size 262144
1458 1 bin of size what’s left
1459
1460 There is actually a little bit of slop in the

numbers in bin_index
1461 for the sake of speed. This makes no

difference elsewhere.
1462
1463 The bins top out around 1MB because we expect

to service large
1464 requests via mmap.
1465
1466 Bin 0 does not exist. Bin 1 is the unordered

list; if that would be
1467 a valid chunk size the small bins are bumped

up one.

Listing 7: Glibc 2.23(malloc/malloc.c): Comment ex-
plaining bin sizes

pattern continues for each first bin of each new size
range:

Size range 32768 First bin (bin 120) only includes
chunks with a size range of 24576 byte.

Size range 262144 First bin (bin 125) only includes
chunks with a size range of 98304 byte.

Besides those deviations, all other bins behave as ex-
pected and the last bin (bin 126) contains an ordered list
of sizes not fitting in any of the other bins. A complete
list with all bins and their size ranges can be seen in
Section VII-G on page 53. This Section also shows the
bin distribution when MALLOC ALIGNMENT is set to
an architecture atypical value (see also Section II-D2 on
page 15) and for a 64 bit architecture, respectively. In
both cases, the distribution differs from the one explained
in this section and displayed in Listing 7, respectively.
The program in Section VII-G on page 53 uses the
bin index macros, that are also used internally by the
Glibc to decide which chunk is placed in which bin.

Fastbins are similar to small bins in the sense that
they contain only chunks of the same size and are all 8
bytes (16 bytes on 64 bit architectures) apart. And like
with the unordered list, the reason for the fastbins itself
is their performance improvement while using them as
fewer operations regarding e.g. pointer operations have
to be made. However, there are only ten fastbins which is



defined by the NFASTBINS (see Listing 8). Furthermore,
only nine out of those ten fastbins are actually used for
chunks. This can be seen for example in line 1608 of
Listing 8 where NFASTBINS is calculated (SIZE_SZ
has typically a value of 4 for 32 bit and 8 for 64 bit
architectures). The macro fastbin_index returns the
index into the fastbins array for a given size. In this
case, it is given the value of MAX_FAST_SIZE , which
is Glibc’s internal maximum size for a fastbin chunk. So
the index for the fastbin containing the biggest possible
fastbin chunk is returned and assigned to NFASTBINS

while adding one up to it. The last fastbin is hence nor-
mally never used and maybe only created for alignment
reasons.

The maximum size for a fastbin chunk is returned
by the macro get_max_fast shown in Listing 9 and
for example used in the int malloc function when
deciding whether or not an already existing fastbin
chunk should be used. The macro returns the value of
global_max_fast , which is calculated with the macro
set_max_fast (line 1676 of Listing 9).
set_max_fast is typically called with the

DEFAULT_MXFAST , which is 64 byte for 32 bit and 128
byte for 64 bit architectures. So normally, only seven out
of 10 fastbins are used while fastbin chunks have a size
from 16 up to 64 byte. It can however also be called
manually via the function mallopt and when supplying
the maximum possible value, nine out of ten fastbins
are used. The relevant part of function mallopt is shown
in Listing 10 (value is the given size for the new
maximum fastbin chunk size).

When freeing chunks, there is also a difference be-
tween fastbin and bin chunks. In this scenario comes
the PREV INUSE bit and the prev size field of the
malloc chunk struct from Section II-C2 on page 7 into
play. If the current chunk that should be freed has a
direct neighbor which is already a freed bin chunk or
the top chunk, and the current chunk would not end
up as a fastbin chunk, both are getting consolidated to
one chunk. If the current chunk or the neighbors are
fastbin chunks, no consolidation happens. The distinction
is made upon the PREV INUSE bit. If this bit is not
set, the previous chunk is considered free and ready
for consolidation. A chunk following a fastbin chunks
keeps its PREV INUSE bit set and hence they are not
consolidated on free and the next chunk’s prev size field
does not contain the fastbin chunk’s size.

If the current chunk is too big for any fastbin and
the previous chunk is either a small or large bin chunk,
they will be consolidated on a call to free. As there

are no pointers to allocated chunks (which the current
chunk that should be freed at this moment still is)
and allocated chunks themselves keep no pointers to
previous or next chunks, the task now is to figure out
the beginning of the previous chunk (as this chunk gets
the new freed chunk with an increased size). This is
accomplished by the prev size field which keeps the size
of the previous chunk if it is a freed bin chunk (this is not
the case for fastbin chunks). So by using the size of the
previous chunk and the offset of the current chunk, the
offset of the previous one can simply be calculated via
subtraction. The last part now is to adjust the previous
chunk’s size to reach until the end of the current chunk
(the current chunk is assimilated) and to integrate the
current chunk in the appropriate bin (for details see
the following part of this section and Section II-D4 on
page 18).

The second scenario is that the next chunk might be
available for consolidation. In this case, there are two
scenarios to distinguish:

1) The next chunk is the top chunk. The current chunk
gets consolidated with it.

2) If not, the PREV INUSE bit of the chunk after
next (it is retrieved by simply adding up the chunks
sizes) is examined, whether or not the next chunk
(from the current chunk’s point of view) is in use.
If not, the last step is similar the scenario with the
previous freed chunk, except that the next chunk is
first released from its bin and afterwards assimilated
(the current chunk’s size is adjusted and added to
the appropriate bin).

The last parts left from the malloc chunk struct from
Section II-C2 on page 7 are the members behind the
size field. They all are pointers and used in conjunction
with freed chunks. The first field fd is a forward pointer
to the next free chunk of the same bin, which must
not necessarily be located on a following address in the
sense of memory space but can also be located behind
that chunk. The counterpart is the field bk, which is a
backward pointer and hence points the previous freed
chunk of the same bin. In the case of small and large
bin chunks, both pointers are used, realizing a doubly
linked list. Those lists are also circular, which means
that following e.g. only the fd pointer will iterate over
all freed chunks of that bin over and over again.

There are two differences to fastbin chunks at this
point. Fastbin chunks use only the forward link fd but not
the backward link (or any other pointer) hence realizing
a simple linked list (it does not loop). The fd field of the



1601 #define fastbin_index(sz) \
1602 ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
1603
1604
1605 /* The maximum fastbin request size we support */
1606 #define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
1607
1608 #define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1)

Listing 8: Glibc 2.23(malloc/malloc.c): Number of fastbins

1676 #define set_max_fast(s) \
1677 global_max_fast = (((s) == 0) \
1678 ? SMALLBIN_WIDTH : ((s + SIZE_SZ) & ˜MALLOC_ALIGN_MASK))
1679 #define get_max_fast() global_max_fast

Listing 9: Glibc 2.23(malloc/malloc.c): Maximum fastbin chunk size

4769 if (value >= 0 && value <= MAX_FAST_SIZE)
4770 {
4771 LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ());
4772 set_max_fast (value);

Listing 10: Glibc 2.23(malloc/malloc.c): Setting maximum fastbin chunk size via mallopt

last freed chunk of a fastbin is hence set to null.
In the case of large bins, also the members fd nextsize

and bk nextsize come into play. As already mentioned,
large bins contain chunks of a given size range. So, those
fields are used to point to the next/previous chunk with
a different size. They are mainly used as a performance
improvement as it speeds up traversing long lists of freed
chunks while searching the right position for a new freed
chunk for that bin (large bins are ordered by size in
descending order: the largest chunks for that bin are the
first chunks). While not all large bin chunks have those
pointers set but only the first chunk of each size, those
fields are still overwritten with null for all other large bin
chunks. See also Section II-D4 on page 18 for further
details.

5) Top Chunk: Each arena has one top chunk and
holds a pointer to it. It represents the free space left
in that arena and is used for allocation requests where
the bins are not able to offer an appropriate free chunk.
On such an allocation, the portion necessary to fulfill
the request is used as the new allocated chunk and the
rest becomes the new top chunk. If the top chunk does
not offer enough space for the current allocation request,
additional space is gathered either via a brk or mmap API
call. For the top chunk, neither the NON MAIN ARENA
nor the IS MMAPPED flag are set but always the
PREV INUSE. While at first this might not be obvious
for the NON MAIN ARENA flag, it definitely makes

sense for the other two. In the case of IS MMAPPED
flag (for more details see Section II-C3 on page 9),
the reason is obvious: there are no top chunks inside
MMAPPED regions. Regarding the PREV INUSE flag,
there are two scenarios to consider:

1) The top chunk is the first chunk in the current
memory region, which results in the same situation
explained earlier in Section II-C5 regarding the very
first chunk.

2) Freeing chunks residing directly before the top
chunk are either getting fastbin chunks (in this
case the PREV INUSE is not unset; see also Sec-
tion II-C4 on page 11) or consolidated with the top
chunk, leaving the beginning of the memory region
or a fastbin/allocated chunk before it, in which cases
the PREV INUSE again stays set.

D. The Memory View

The following sections describe how and where the
structs, described in Section II-C on page 5, are stored
in memory for a running Linux user space process that
uses Glibc for heap allocations.

1) Arena and Heap Info structs in Memory: The main
heap is a continuous region of memory containing all
chunks of the main arena. While it is continuous, it can
however get split up in multiple contiguous memory re-
gions described by vm area struct structs. Its describing
malloc state struct is stored in the bss section of the



mapped Glibc library and as already stated, no heap info
structs are used for the main arena.

The malloc state struct for thread arenas however is
stored together with chunks in the same memory region.
More precisely, it is located right after the first heap info
struct and before the first chunk of that arena. Normally,
a heap info stuct can be found at the beginning of each
mapped memory region belonging to a thread arena.
Besides that, there are also instances where further
heap info stucts end up in the same mapped memory
region. These can be related to the same arena but also
to another one.

It can however be stated that at the beginning of a
memory region belonging to a thread arena, normally
always a heap info struct can be found.

Fig. 5 on the following page illustrates the pre-
viously described scenarios and the information from
Section II-C1 on page 5. Grey areas are memory regions
described by vm area struct structs, structs and chunks
marked in blue belong to the same arena and the ones
in green to another. The pointers starting on the size
member mark the end of the memory area described
by the corresponding heap info struct, ar ptr points to
its arena (malloc state struct) and prev to the previous
heap info struct in the same arena.

Heap and stack are normally at opposite sides and
grow towards each other. This is, in fact, true as long
as the heap does only consist of the main arena without
any thread arenas or MMAPPED chunks. But as soon as
either one of them is introduced, this strict separation is
broken. The MMAPPED chunks scenario is explained in
Section II-C3, Section II-D3 and Section III-F. Similar
to MMAPPED chunks, the memory regions belonging
to thread arenas most of the time get mixed up with
memory regions containing stack frames for certain
threads.

Regarding the value of an arena’s system mem and a
heap info’s size member, respectively, those sizes must
not necessarily correspond with the size of the associated
memory regions. There have been instances observed,
where slack space was at the end of an arena. More
precisely, it was slack space right after the top chunk. In
these cases, the top chunk did not consume the whole
space until the end from the containing memory region
but left some slack space.

2) Allocated Chunks in Memory: As already de-
scribed in Section II-C2 on page 7, the size of
chunks is aligned. Alignment in this context does
however not only apply to the size but also to the
location of chunks. The address where each chunk

starts is not arbitrary but controlled with the variables
MALLOC ALIGNMENT and MALLOC ALIGN MASK,
while MALLOC ALIGNMENT has typically a value
of 8 for 32 bit and 16 for 64 bit architectures
and MALLOC ALIGN MASK is for both architectures
MALLOC_ALIGNMENT − 1 (see Listing 3 for their
definitions). Glibc macros that test for a chunk’s align-
ment and use these variables are aligned_OK and
misaligned_chunk , which are shown in Listing 11.

This means that chunks are typically located on an
address that is evenly divisible by 8 on a 32 bit and by 16
on a 64 bit architecture, respectively. It should however
be noted that it is possible to set MALLOC ALIGNMENT
to an architecture untypical value via compile-time op-
tions resulting in different address and size alignments.

Another fact to consider regarding the first chunk of
an arena respectively a memory region described by
a heap info struct: This chunk might, in some cases,
not be located right after a malloc state or heap info
struct, but a few bytes after them. The reason for that
is on the one hand the alignment requirement for the
chunk’s starting address, as explained previously, and
on the other hand the malloc state’s and heap info’s
struct size, respectively. Because their size must not be
evenly divisible by 8 and 16, respectively, there might
be cases in which the next free space after those structs
is at an address which does not satisfy the alignment
requirement. This is for example the case for Glibc
version 2.23 on a 32 bit architecture, as the malloc state
struct has a total size of 1108, which is not evenly
divisible by 8. So for the first memory region of the
thread arena, which contains a heap info struct (total
size of 16) followed by a malloc state struct, the next
free address would be 1124, but the next aligned address
is 1128 which is where the first chunk will end up.

As previous Glibc versions like 2.22 and 2.21 did not
have the attached threads member for the malloc state
struct, which has a size of 4 byte on 32 bit architec-
tures, the first chunk is stored in these cases right after
malloc state struct. This is for example conversely true
for 64 bit architectures. Here did the attached threads
member make the malloc state struct evenly divisible
by 16, which was not the case on versions before Glibc
2.23.

The additional offset scenario is however not relevant
for the main arena, because neither a malloc state nor
a heap info struct are placed in the main heap memory
region and the start address of the main heap is typically
evenly divisible by 8 and 16.

Fig. 6 on page 17 illustrates an allocated chunk in
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Fig. 5: heap info and malloc state structs in memory

1229 /* Check if m has acceptable alignment */
1230
1231 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1232
1233 #define misaligned_chunk(p) \
1234 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1235 & MALLOC_ALIGN_MASK)

Listing 11: Glibc 2.23(malloc/malloc.c): Macros for alignment test

memory. As can be seen, the user data starts right after
the size member and reaches until the size member of the
next chunk. So all members of the malloc chunk struct
following the size field are overwritten with user data.
This goes a step further and should be explained in an
example.

When allocating a chunk e.g. on a 32 bit architecture
with malloc(500), a chunk with the value 504 (disregard-
ing any flags) in its size member is created. But when
calling the Glibc function malloc usable size, which
returns the amount of bytes the given chunk can store,
it will return 500. There is a second fact to take into

account. As stated before, the data part begins right after
the size member, while the size member itself defines
the size of the whole chunk, starting with the current
chunk’s prev size member until the prev size member
of the next chunk. On a 32 bit architecture, this would
normally leave only 496 byte for user data. The reason
that the usable size is still 500 byte, shall be explained
using the Fig. 6 on the facing page.

As can be seen, user data of an allocated chunk (in this
case the chunk at the top) reaches from the fd member
until the beginning of the size field of the next chunk
while overwriting all blue fields with user data. As ex-
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Fig. 6: Allocated chunk in memory

plained in Section II-C4 on page 11, the least significant
bit of the size field is the PREV INUSE bit, which deter-
mines whether or not the previous chunk is allocated or
free and hence the prev size field contains the previous
chunk’s size. If the next chunk’s PREV INUSE bit is
set, which is the case for chunks following an allocated
chunk, its prev size member does not contain the size of
the previous chunk but are simply part of the previous
chunk’s user data. So for all allocated chunks within the
main or any thread arena, the prev size field of the next
chunk is used to store data. This technique of using fields
of a struct only in cases they are required and otherwise
leaving them for other purposes is called boundary tags
(see e.g. the survey of such techniques by Wilson et al.
(1995, p. 28)).

From an external point of view, the amount of usable
bytes can be calculated with one of the following formu-
las, where sizeof(FIELD) represents the size of the
given field and not the value of that field (e.g. on a 32
bit architecture, the size field is typically an four byte
unsigned integer: sizeof(size)=4 ) and chunksize

is the value of the size member without any flags:

usable_bytes = chunksize− (sizeof(prev_size) +

sizeof(size) + sizeof(prev_size)

usable_bytes = chunksize− sizeof(prev_size)

3) MMAPPED chunks in Memory: MMAPPED
chunks are normally located in a dedicated memory
region described by a vm area struct struct (see Sec-
tion III-F on page 30 for exceptions), which contains one
or more of such chunks. As described in Section II-B
on page 3, there are no pointers from meta structures
like malloc state or heap info that reference the memory
regions or the chunks themselves. While those regions
are often located near other heap related memory regions,
they can also be stored somewhere else in the process
address space (e.g. between mapped files).

Similar to their size, which is always a multiple
of page size (see Section II-C3 on page 9), they are
always located at an address that is evenly divisible
by page size. This is due to the mmap API function
that returns the memory space for the requested chunk,
which not only returns a size but also an address on a
page size boundary. Moreover, despite the fact that each
MMAPPED chunk results from a separate mmap call,
multiple MMAPPED chunks can end up in the same
memory region described by one vm area struct struct,
as the kernel can simply enlarge a region. On the other
hand, a continuous memory region can get split up in
two separate regions if an MMAPPED chunk, located
between two or more MMAPPED chunks from the same
region, is freed (its related pages are returned to the
operating system).

As described in Section II-C3 on page 9, the requested
size for a chunk (when exceeding the mmap threshold)
is increased to the next highest value evenly divisible
by page size with the macro ALIGN UP, as mmap
returns anyways a memory region that is a multiple of
page size. Despite that fact, there are still scenarios in
which an MMAPPED chunk does not use the whole
memory region returned by the mmap call. The memory
region returned by mmap in such cases was at least
one page size larger than the size requested by the
Glibc implementation (after aligning it up). This leaves
some slack space (similar to the scenario described in
Section II-D1 on page 14) right after the last MMAPPED
chunk for a given memory region that typically consists
only of null bytes.

The calculations for the usable size of an allocated
chunk done in Section II-D2 on page 15 are not valid
for MMAPPED chunks as they do not use the prev size
member of the next chunk. This is also illustrated in
Fig. 7 on the following page. There are two reasons for
that:

• It is not guaranteed that an MMAPPED chunk is
followed by another chunk, whose prev size could
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be used for data (e.g. in the case of only one
MMAPPED chunk, or for the MMAPPED chunk
at the end of a memory region).

• Even if the current MMAPPED chunk has a follow-
ing chunk whose prev size could be used, as soon
as the following chunk is freed, its memory space is
removed from the current process and would hence
lead to missing data.

The usable size for an MMAPPED chunk can be
calculated with the following formula:

usable_size = chunksize− 2 ∗ sizeof(prev_size)

4) Freed Chunks and Bins in Memory: At the be-
ginning of an arena, all bins and fastbins are empty.
This is however realized in different ways. In the case of
fastbins, their pointers are all initialized with zero, while
bins have a pointer to themselves. How this referencing
works shall be explained using the following figures.
The first Fig. 8 shows three bins and the initial situation
for bin 11, whose pointers are still referencing itself.
However, when looking solely at those pointers, it seems
like they reference the previous bin. The reason for this
is that they are pointers to a malloc chunk struct. As
each bin contains a forward and a backward link, the
initial pointers do not really point to a previous bin or
to themselves, but to the position where a chunk would
be stored, if bin 11’s fd and bk pointers are those of
a malloc chunk. The template of an imaginary chunk
(drawn in black) in Fig. 8 tries to visualize this scenario.
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Bin 11 (bk)

Bin 12 (fd)

malloc_chunk

prev_size

size

fd

bk

fd_nextsize
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...

...

Fig. 8: Initial bin situation

Taking this a step further, Fig. 9 on the next page
shows the situation in which bin 11 contains exactly one
chunk. As can be seen, the real freed chunk (on the
right side) references the imaginary chunk in the arena,
so that this chunk’s fd and bk pointers match with bin
11’s pointers.

The last general modification is done when multiple
chunks are part of a bin. This is illustrated in Fig. 10
on the facing page. As can be seen, the bin’s backward
pointer points to the last chunk of that bin (which is the
chunk with the smallest size) and the forward pointer
references the first chunk (the biggest one). On the other
hand, the first chunk’s bk and the last chunk’s fd pointer
both reference the imaginary chunk in the arena and
hence realize a circular doubly linked list.

The scenario with fastbins is a bit different. As already
noted, initially all fastbin pointer are set to zero and as
described in Section II-C4 on page 11, fastbin chunks
only use the fd pointer and are not linked circularly. If
a chunk is included in a fastbin, a simple malloc chunk
pointer is created and beginning with the first fastbin
chunk, the fd field is used to point to the next chunk but
none of them points back. Hence, there is no scenario
in which a reference points back to another fastbin in
order to realize an imaginary chunk whose fd field would
end up at the correct offset for the current fastbin. If all
chunks of a fastbin are reallocated, the arena’s fastbin
pointer is again set to zero.

Continuing the usable amount of space calculations
for allocated chunks described in Section II-D2 on
page 15 and Section II-D3 on the previous page, the
four different kinds of free chunks shall be examined
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for their amount of potentially not overwritten amount
of data. In the case of a fastbin chunk, the only part
that differs is the increased offset for the beginning of
remaining user data. As can be seen in Fig. 11 on the
following page, the fastbin chunk uses the fd member
and hence overwrites any potential data at that position.
Parts marked blue are data from that fastbin chunk, parts
marked in purple are data from other chunks. The area
for non-overwritten data starts with the bk field and
reaches until the size member of the next chunk, like with
an allocated chunk, because the PREV INUSE flag is not
unset for fastbin chunks and hence the prev size field of
the next chunk is not overwritten with size information
(see also Section II-C4 on page 11).

Using the last calculation example from Section II-C2
on page 7, the following formula can be derived for the
amount of not overwritten user data:

not_overwritten_bytes = chunksize− sizeof(prev_size)

− sizeof(fd)

Regarding the case of a small bin chunk, there are
slightly more differences. As can be seen in Fig. 12 on
the next page and explained in Section II-C4 on page 11,
all freed bin chunks use the fd and bk members for the
doubly linked list. This means that any potential data at
that position has been overwritten and that the earliest
offset for extractable user data starts with the fd nextsize
member. On the other hand, as the PREV INUSE flag of
the next chunk is set for this freed chunk, the prev size
field of the next chunk now contains a size value, hence
not containing any user data anymore. The formula for
the amount of not overwritten user data can now be
calculated as follows:
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not_overwritten_bytes = chunksize−
2 ∗ sizeof(prev_size)−
sizeof(fd)− sizeof(bk)

An interesting example are large bin chunks. As they
also use the fd nextsize and bk nextsize members, which
are the last members of the malloc chunk struct, and like
with small bin chunks the prev size of the next chunks
does not contain user data anymore, their remaining data
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Fig. 13: Large bin chunk in memory

part reaches exactly from the end of the current chunks
struct until the beginning of the next chunks struct (see
Fig. 13). The amount of not overwritten user data can
be calculated as follows:

not_overwritten_bytes = chunksize− 2 ∗ sizeof(prev_size)
− sizeof(fd)− sizeof(bk)

− sizeof(fd_nextsize)

− sizeof(bk_nextsize)

The last case is the top chunk. As this chunk does not
use any pointers, the data part starts like with allocated
chunks right after the fd member and as it is the last
chunk in an arena (and most of the time ends right at the
memory region boundary), there is no following chunk
whose prev size field could be used (see also Fig. 14 on
the facing page). The amount of not overwritten user data
can hence be calculated using the following formula:

not_overwritten_bytes = chunksize− 2 ∗ sizeof(prev_size)

E. The Bottom Chunks Scenario

This section explains two chunks that are located at the
bottom of a heap region (one described by a heap info
struct), that does not contain top chunk. Those chunks do
not fulfill the requirements of normal chunks and might
contain user data.

When the top chunk for a certain arena does not serve
enough space for a new malloc request, the sysmalloc
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routine is used to decide how this request is handled.
There are in essence four different scenarios regarding
how this request ends up:

1) If certain conditions are met (like the request size
must be at least as large as the mmap threshold),
a new memory region is created that serves space
for an MMAPPED chunk (see Section II-C3 on
page 9).

2) If the given arena is the main arena and scenario
1 has not been succeeded/is not be used, the main
arena is simply enlarged using brk.

3) If the given arena is not the main arena, the
heap is enlarged if the new value does not exceed
HEAP MAX SIZE (see Section VII-B on page 49)
and otherwise a new heap is created (including
a heap info struct at the beginning of the new
memory region).

4) If scenario 2 failed and no arena has been specified,
the malloc request fails.

If a new heap is created (second part of scenario 3),
it results in some modifications of the old heap. These
include at least the creation of a new top chunk within a
new a heap region and the decrease of the old top chunk
by some bytes.

Which further modifications are taken depends on the
available space of the old top chunk. The following
Listing 12 represents the relevant code excerpts for all
possible modifications.

Independent from a certain initial situation, at least the
following modifications are done:

• The macro set_head from line 2 sets the given
chunk’s size.

• The macro set_foot from line 4 sets the prev size
field of the next chunk.

• The macro chunk_at_offset from line 6 returns
a chunk at offset p+ s.

• Line 8 decreases the top chunk’s size by MINSIZE
bytes

• Line 9 sets the size field of the last chunk (in
essence the last 4 bytes of the memory segment)
to 0x1, which means a chunk size of 0 with the
PREV INUSE bit set.

The if and else statement will be explained
in detail in the following sections. However in both
cases, exactly two bottom chunks are created that do
not conform to the properties of a chunk in general.

1) Following the if Statement: If the newly calculated
old_size is at least as big as MINSIZE , the if branch
is executed. Describing that scenario and the commands
executed in natural language:

• The size of the old top chunk has been decreased
by MINSIZE .

• In the case of the if statement, the bottom chunks
both take exactly a size of MINSIZE which is why
this value is subtracted.

• The if statement hence tests if the rest of the old
top chunk leaves enough space to create a chunk
that fulfills the minimum size requirement.

• As in this case two chunks use the space that
normally is at least required for one chunk, those
chunks do not fulfill the minimum size requirement
for chunks.

• The if statement essentially creates the first bottom
chunk (see also Fig. 15 on page 23 and Sec-
tion II-E3 on the following page), sets the second
bottom chunk’s prev size field and frees the rest of
the top chunk.

Figure 14 and 15 illustrate those modifications. The
initial situation is the same as illustrated in Fig. 14, with
the top chunk as the last chunk. The location of the top
chunk plus its size points to the end of the heaps memory
segment (indicated by the pointer at the right corner of
the Figure).

Fig. 15 on page 23 shows the resulting heap layout
after following the if statement. As can be seen, the
old top chunk has been changed to a normal freed chunk,
which is part of a bin or fastbin and whose size now
points to the beginning of another chunk. The bytes after
the new freed chunk and before the end of the memory
segment are now used for two new chunks (the bottom
chunks) created by lines 9 and 12, each of them having an



1 ...
2 #define set_head(p, s) ((p)->size = (s))
3 ...
4 #define set_foot(p, s) (((mchunkptr) ((char *) (p) + (s)))->prev_size = (s))
5 ...
6 #define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s)))
7 ...
8 old_size = (old_size - MINSIZE) & ˜MALLOC_ALIGN_MASK;
9 set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), 0 | PREV_INUSE);

10 if (old_size >= MINSIZE)
11 {
12 set_head (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ) | PREV_INUSE);
13 set_foot (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ));
14 set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
15 _int_free (av, old_top, 1);
16 }
17 else
18 {
19 set_head (old_top, (old_size + 2 * SIZE_SZ) | PREV_INUSE);
20 set_foot (old_top, (old_size + 2 * SIZE_SZ));
21 }

Listing 12: Glibc 2.23(malloc/malloc.c): Relevant Glibc code for Top Chunk Modifications

absolute size of SIZE_SZ∗2. These chunks contain only
size information but no user data anymore. Annotations
like line 14 in Fig. 15 on the next page reference the
corresponding line from Listing 12 and relate to the
according field on the same altitude.

2) Following the else Statement: Regarding the else
statement, there are two scenarios in which this branch
is executed.

1) The old top chunk leaves exactly enough space for
the two bottom chunks (MINSIZE bytes) but not
more.

2) The old top chunk is larger than MINSIZE but
smaller than MINSIZE ∗ 2.

In both scenarios, no additional freed chunk is created
from the old top chunk. In the first scenario, the old top
chunk is simply transformed in the two top chunks, again
each with a size of SIZE_SZ∗2. In the second scenario,
the old top chunk is again transformed in the two bottom
chunks, but the first one (see Figure 15) has a bigger
size and might contain user data. The amount of not
overwritten user data depends mainly on the architecture.
In can be calculated using the following formula:

not_overwritten_bytes = old_top_size− MINSIZE

This scenario only occurs if the old top chunk’s size
is smaller than MINSIZE ∗ 2 and hence leaves at most
8 byte of not overwritten data for 32 bit and 16 byte
for 64 bit architectures. As however the second half of
that space consists of the old top chunk’s size field, only
4 byte for 32 bit and 8 byte for 64 bit architectures,

respectively, of actual remaining user data can be found
in that chunk at most. Regarding a 32 bit architecture,
the following section illustrates the different scenarios
using a live example.

3) Live Example: The following listings illustrate
the different bottom chunk scenarios and use a chunk
annotation that is taken from the Rekall plugin described
in Section III-G on page 32, as this plugin has been
used to analyze the bottom chunk scenario. The basis
for this example is the program Bottom chunks from
Section VII-D on page 51. One relevant function that
is used by this program is fillHeapWithChunks (see
Section VII-G on page 53), which fills a heap region
(described by a heap info struct) with chunks until its
maximum size, but leaving at least SIZE_SZ∗2 bytes of
free space. It can however be called with a value greater
than zero for the second argument, which leads to more
free space between the last chunk and the end of the
heap: SIZE_SZ∗2+argument. The first argument to
that function is only used to compensate the additional
size of the malloc state struct in the first heap.

The output in the following Listings represents the rel-
evant parts of the malloc chunk struct for the respective
chunk and are the result from the Vtype language used by
the Rekall framework, but with slight modifications for a
better understanding (like renaming and stripping). The
hexadecimal value after the @ is the chunk’s location and
the value in the first column before each struct member
is that field’s offset within that struct. The value at the
end of all other lines and sometimes in square brackets
is that field’s value.
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The first Listing 13 illustrates the result from the first
fillHeapWithChunks call in line 10 of Listing 39
and an additional malloc call afterwards (realized by
going until the next fillHeapWithChunks call) and
represents the first scenario of the else statement. As
can be seen, the last_chunk fills up the entire space
until the last two bottom chunks, leaving them each with
a size of 8 bytes. The fields fd , bk and so on of
the last_chunk and the prev_size field of the first
bottom chunk do not contain pointers or an actual size,
but only the user data from chunk last_chunk (in this
case the string ZZZZZZZZZZZZZZZZ...ZZZZ).

The next Listing 14 illustrates the result from the sec-
ond fillHeapWithChunks call in line 14 of Listing 39
and an additional malloc call afterwards and represents
the second scenario of the else statement. The relevant
changes to the previous Listing are the decreased size of
the last_chunk and the increased size of the first

bottom_chunk . The additional space in the first

bottom_chunk is also indicated by showing the fields
fd and bk , which do not contain any pointers, but
not overwritten data from this part of the heap. So if
an allocated chunk had user data on that position, it
would now be probably still there. A proof of concept
program can be found in Section VII-E on page 52 while
Section VII-F on page 53 is showing an example output
when dumping such a chunk.

The following Listing 15 illustrates the result from
the third fillHeapWithChunks call in line 18 of
Listing 39 and an additional malloc call afterwards and
represents the first scenario in which the if state-

ment gets executed. As can be seen, in addition to the
last_chunk there is a free_chunk which is also
part of a bin (the fd and bk pointers are set). This
results from the 16 byte between the last_chunk and
the space necessary for the bottom chunks, that are now
fulfilling the requirement from Listing 12, line 10.

Listing 16 just illustrates what happens if the free
space increases but stays beyond the required size of the
current malloc request. The size of the free_chunk

simply increases, the prev_size of the first

bottom_chunk is set accordingly and everything else
stays pretty much the same.

When running all scenarios on a 64 bit architecture,
the only thing that differs is the amount of bytes needed
to change between the different scenarios and the size of
the first bottom_chunk in the scenario described by
Listing 14 is 32 byte, leaving 16 byte of not overwritten
data.



1 [malloc_chunk last_chunk] @ 0xB6CF04E0
2 0x00 prev_size [unsigned int:prev_size]: 0x00000000
3 0x04 size [unsigned int:size]: 0x0000FB15
4 0x08 fd <malloc_chunk Pointer to [0x5A5A5A5A] (fd)>
5 0x0C bk <malloc_chunk Pointer to [0x5A5A5A5A] (bk)>
6 0x10 fd_nextsize <malloc_chunk Pointer to [0x5A5A5A5A] (fd_nextsize)>
7 0x14 bk_nextsize <malloc_chunk Pointer to [0x5A5A5A5A] (bk_nextsize)>
8
9 [malloc_chunk first bottom_chunk] @ 0xB6CFFFF0

10 0x00 prev_size [unsigned int:prev_size]: 0x5A5A5A5A
11 0x04 size [unsigned int:size]: 0x00000009
12
13 [malloc_chunk second bottom_chunk] @ 0xB6CFFFF8
14 0x00 prev_size [unsigned int:prev_size]: 0x00000008
15 0x04 size [unsigned int:size]: 0x00000001

Listing 13: No additional space between last chunk and bottom chunks

1 [malloc_chunk last_chunk] @ 0xB6AF0088
2 0x00 prev_size [unsigned int:prev_size]: 0x00000000
3 0x04 size [unsigned int:size]: 0x0000FF65
4 0x08 fd <malloc_chunk Pointer to [0x5A5A5A5A] (fd)>
5 0x0C bk <malloc_chunk Pointer to [0x5A5A5A5A] (bk)>
6 0x10 fd_nextsize <malloc_chunk Pointer to [0x5A5A5A5A] (fd_nextsize)>
7 0x14 bk_nextsize <malloc_chunk Pointer to [0x5A5A5A5A] (bk_nextsize)>
8
9 [malloc_chunk first bottom_chunk] @ 0xB6AFFFE8

10 0x00 prev_size [unsigned int:prev_size]: 0x5A5A5A5A
11 0x04 size [unsigned int:size]: 0x00000011
12 0x08 fd <malloc_chunk Pointer to [0x00000000] (fd)>
13 0x0C bk <malloc_chunk Pointer to [0x00000000] (bk)>
14
15 [malloc_chunk second bottom_chunk] @ 0xB6AFFFF8
16 0x00 prev_size [unsigned int:prev_size]: 0x00000010
17 0x04 size [unsigned int:size]: 0x00000001

Listing 14: Eight bytes space between last chunk and bottom chunks

1 [malloc_chunk malloc_chunk] @ 0xB68F0088
2 0x00 prev_size [unsigned int:prev_size]: 0x00000000
3 0x04 size [unsigned int:size]: 0x0000FF55
4 0x08 fd <malloc_chunk Pointer to [0x5A5A5A5A] (fd)>
5 0x0C bk <malloc_chunk Pointer to [0x5A5A5A5A] (bk)>
6 0x10 fd_nextsize <malloc_chunk Pointer to [0x5A5A5A5A] (fd_nextsize)>
7 0x14 bk_nextsize <malloc_chunk Pointer to [0x5A5A5A5A] (bk_nextsize)>
8
9 [malloc_chunk free_chunk] @ 0xB6BFFFE0

10 0x00 prev_size [unsigned int:prev_size]: 0x5A5A5A5A
11 0x04 size [unsigned int:size]: 0x00000011
12 0x08 fd <malloc_chunk Pointer to [0xB6C00048] (fd)>
13 0x0C bk <malloc_chunk Pointer to [0xB6C00048] (bk)>
14
15 [malloc_chunk first bottom_chunk] @ 0xB6BFFFF0
16 0x00 prev_size [unsigned int:prev_size]: 0x00000010
17 0x04 size [unsigned int:size]: 0x00000008
18
19 [malloc_chunk second bottom_chunk] @ 0xB6BFFFF8
20 0x00 prev_size [unsigned int:prev_size]: 0x00000008
21 0x04 size [unsigned int:size]: 0x00000001

Listing 15: Sixteen byte space between last chunk and bottom chunks



1 [malloc_chunk last_chunk] @ 0xB69F0088
2 0x00 prev_size [unsigned int:prev_size]: 0x00000000
3 0x04 size [unsigned int:size]: 0x0000FF4D
4 0x08 fd <malloc_chunk Pointer to [0x5A5A5A5A] (fd)>
5 0x0C bk <malloc_chunk Pointer to [0x5A5A5A5A] (bk)>
6 0x10 fd_nextsize <malloc_chunk Pointer to [0x5A5A5A5A] (fd_nextsize)>
7 0x14 bk_nextsize <malloc_chunk Pointer to [0x5A5A5A5A] (bk_nextsize)>
8
9 [malloc_chunk free_chunk] @ 0xB68FFFD8

10 0x00 prev_size [unsigned int:prev_size]: 0x5A5A5A5A
11 0x04 size [unsigned int:size]: 0x00000019
12 0x08 fd <malloc_chunk Pointer to [0xB6C00050] (fd)>
13 0x0C bk <malloc_chunk Pointer to [0xB6C00050] (bk)>
14 0x10 fd_nextsize <malloc_chunk Pointer to [0x00000000] (fd_nextsize)>
15 0x14 bk_nextsize <malloc_chunk Pointer to [0x00000000] (bk_nextsize)>
16
17 [malloc_chunk first bottom_chunk] @ 0xB68FFFF0
18 0x00 prev_size [unsigned int:prev_size]: 0x00000018
19 0x04 size [unsigned int:size]: 0x00000008
20
21 [malloc_chunk second bottom_chunk] @ 0xB68FFFF8
22 0x00 prev_size [unsigned int:prev_size]: 0x00000008
23 0x04 size [unsigned int:size]: 0x00000001

Listing 16: Twenty four byte space between last chunk and bottom chunks

III. PLUGIN IMPLEMENTATION

The following sub sections describe the Python class
HeapAnalysis, which represents the implementation of
all analysis results described beforehand and the last sub
section III-G the heap analysis plugins, which are based
on that class. Our implementations are an extension to
the Rekall Memory Forensic Framework (Google Inc,
2016c) and have been tested with Rekall versions 1.5.1
and 1.5.2.post1. At the point of writing, they support
at least the Glibc versions 2.20, 2.21, 2.22, 2.23 and
2.24 on x86 and x64 architectures.Glibc version 2.24
was released after this research started and hence was
not the basis for this work, but been tested against.

A. The HeapAnalysis Class

All plugins mentioned in this work are essentially
Python classes that simply inherit from HeapAnalysis
and use its methods to gather all relevant information,
such as allocated chunks, to perform their analysis.
The following list describes the most relevant public
functions offered by the HeapAnalysis class that are
intended e.g. for manual testing or plugin development.

init for task The function covered in Section III-B on
the next page and normally the first function to use. It
is responsible for initializing the HeapAnalysis class
for a given task/process.

get all chunks This function returns all chunks that can
be found (no matter if freed, allocated or MMAPPED).
There are also functions for each chunk type and
also the most relevant subtypes. They include

get all freed chunks, get all freed bin chunks,
get all freed fastbin chunks,
get all allocated chunks,
get all allocated thread chunks,
get all allocated main chunks and
get all allocated mmapped chunks.

get main arena Returns the internal main arena (either
the real or the dummy arena).

search chunks for pointers Searches all chunks for
the given pointers and returns the ones containing at
least one pointer (is e.g. used for the analysis of the
zsh command history; see Section V-A on page 36).

get aligned address This function is mostly relevant
for developing plugins. It takes a given address and
returns an address, that is aligned regarding internal
settings (see Section II-D2 on page 15)

get aligned size Works similar to the request2size
macro explained in Section II-C2 on page 7. It is also
mostly relevant for developing plugins. A scenario in
that it for example gets relevant: If an investigator
knows that a given struct is used by a process and
knows its size, he can use this function to get the size
of the resulting chunk and explicitly search for those
chunks (see for example Section V-A on page 36).

chunk in use This function determines, if the given
chunk is in use (not freed). It does that by taking a
given chunk, gathering its next chunk, looking at that
PREV INUSE bit and afterwards returns true or false
accordingly.

get mallinfo string It returns a string containing an



output that is comparable with the mallinfo struct
and the default print output, respectively (see also
Section IV-A on page 35).

activate chunk preservation By calling this function it
forces all allocated chunks to be stored in lists, which
highly increases the speed of a second walk over those
chunks. So plugins that need to iterate the chunks at
least two times should use it (e.g. heapdump uses it).

to string This function is not offered directly by the
HeapAnalysis but by the malloc chunk class. Hence,
it can be called on each chunk instance returned from
the HeapAnalysis class and returns the relevant data
part as calculated in the subsections of Section II-D
on page 14 (e.g. it omits the fd and bk field for a small
bin chunk).

The HeapAnalysis is typically initialized for a given
task on which it operates. From a high level perspective,
the HeapAnalysis class works as follows:

1) The class instance is initialized for a given task (see
Section III-B).

2) If the current task is no kernel thread, it tries to load
the appropriate Glibc profile (see Section III-C on
the next page).

3) One of the main tasks now is to gather the main
arena (see Section III-D on page 28). This arena is
important as it holds the bin information, a pointer
to the other arenas and is used, due its location in
the Glibc library, as verification during the initial-
ization process (see Section III-D on page 28).

4) If the main arena has been found, its first chunk
and, if existent, all other arenas are initialized.

5) If more than one arena is existent, all heap info
structs are enumerated and for each, their first chunk
gathered.

6) The last step is to find any memory area that
contains MMAPPED chunks and to get their first
chunk.

7) The instance is now ready and all chunks can be
walked. Walking in this context means, the current
chunk’s position plus its size is used to find the next
chunk within the same memory region.

B. Initialization for a given Task

The relevant function at this point is init for task,
which expects a task object as argument. This function
controls all relevant functions used for the initialization
process. If no major problem occurs and it returns true,
the HeapAnalysis instance should be successfully set up
and ready to walk chunks (see Section III-G on page 32).
If something went wrong, it returns false and resets itself,

which means process specific initializations, made before
the error occurred, are revoked. This reset procedure is
also called at the beginning of the init for task function,
so no process specific information is kept anymore
(relevant if a plugin is used for multiple processes).

The task object argument originates from the LinPro-
cessFilter instance and provides all details about a given
process that can be gathered at the moment by the Rekall
framework. The first attribute of the task object that is
examined is mm, which correlates to the mm member
of the process’ task struct struct. As kernel threads
normally have no associated mm struct, this attribute can
be used to easily exclude any kernel threads from the
analysis, as the current heap analysis does not apply to
the kernel.

If the current task is not a kernel thread, the linked
list of vm area struct structs is used to initialize the
Glibc profile. This step is repeated for every task, as
processes can use different Glibc versions (takes effect if
no debug information is provided by the investigator; see
Section III-C on the next page). Depending on whether
or not debug information for the current Glibc version
are available, the global variable mp (see Section II-C1
on page 5) is gathered from the mapped Glibc library,
which will later serve as a verification regarding hidden
MMAPPED chunks (see Section III-F on page 30 and
Section IV-A on page 35).

If a Glibc profile is successfully loaded, init for task
now tries to gather the main arena (see Section III-D on
page 28). Depending on whether the main arena has been
found in the loaded Glibc library or if the dummy arena
has been created (see also Section III-D on page 28),
the following steps differ. In the case the real main
arena has been found, the first step is to verify that the
circular linked list of arenas does loop and not contain
more members than expected (see also Section II-C1
on page 5). The outcome of this test does however not
stop the further initialization, but only print a warning if
something unexpected has been detected. Now, all arenas
contained in the linked list are initialized:

• The arena objects are kept in a list that is an attribute
of the HeapAnalysis class instance.

• The bin and fastbin chunks for each arena are put in
an arena specific list (each arena object has one list
for bin and one for fastbin chunks). The reason for
this step is efficiency. The freed chunks are used for
tests on each chunk while walking allocated chunks
in the memory (see also Section IV-A on page 35).
As gathering the chunks each time from the memory
dump would be very time consuming, they are kept



in a list in memory where iterating over them is
way more faster.

• The top chunk is set as a separate attribute (see
Section III-E on page 30).

• For all thread arenas, their corresponding heap info
structs are gathered and kept in an attribute for that
arena. The process of getting them can be explained
with Fig. 5 on page 16.
– As shown in the most right memory region, the

top chunk is located at the bottom in the second
part of that region.

– First the memory region described by a
vm area struct struct, containing this top chunk
is gathered.

– The beginning of that memory region is now
interpreted as a heap info instance.

– If the top chunk is located within its range
(is determined with heap info’s size field), this
instance is returned.

– If not, all following heap info structs are gath-
ered, until the correct one is found or the end of
the surrounding memory region is encountered.

– As soon as the correct heap info struct instance
is gathered, it is tested if its ar ptr field points
to the current arena.

– If that is the case, the prev field is used to get
all other heap info structs (the one residing at
the top chunk is the last one, so no need to look
forward).

• After gathering the heap info structs via the top
chunk, a verification process starts that tries to find
heap info structs in all memory regions and com-
pares that result with the already gathered heap info
structs. This process is described in more detail in
Section IV-A on page 35.

• In the case of the main arena, the first chunk from
the main heap memory region is gathered, which
eases the task of walking the chunks later on.

• For all thread arenas, the first chunk is not held in
the arena but in its heap info objects, as they are the
relevant descriptors for the corresponding memory
regions.

The initialization process for the dummy arena sce-
nario differs. On the one hand, there are no further arenas
to be examined and on the other hand there are no usable
bin and fastbin pointers from the dummy arena (see
Section III-D on the following page and Section III-E
on page 30). While it would be possible to gather at
least freed bin chunks from the memory region, there

are obviously none to gather (which is why the dummy
arena scenario is used). And as freed fastbin chunks
cannot be retrieved solely from memory, as they are
not easily differentiable from allocated chunks (the next
chunk keeps its PREV INUSE bit set; see Section II-C2
on page 7), all bin lists stay empty and the only elements
left to initialize are the first chunk and the top chunk.
Both can be gathered by simply walking chunks in the
main heap. The first chunk is located at the beginning
of the memory region and the top chunk is the chunk,
whose size reaches until the end of the memory region.
Another difference is the fact, that the dummy arena’s
system mem value is empty (because it cannot access the
real field). It is simply set by calculating the difference
between the end of the main heap (calculated by the
offset of the top chunk plus its size) and the beginning
of the main heap’s memory region (gathered from the
vm area struct struct).

The last step for both scenarios is to initialize the
MMAPPED chunks, which are kept in a list attribute
with the main arena object (no matter if dummy arena or
not). Basically, this is done by looking at the beginning
of all memory regions that are not known to be already
part of an arena or contain a mapped file and then
checking, if the data at this position complies with
the existing knowledge about MMAPPED chunks (see
Sections II-C3, II-D3 and III-F for details). As there
are however also scenarios in which MMAPPED chunks
hide somewhere behind other data, this approach is
not sufficient and gets extended under specific circum-
stances. See Section III-F on page 30 for details.

After successful initialization, the functions listed in
Section III-A on page 25 can be used to walk all chunks
and gather further information.

C. Glibc profile

Because the debug information from Glibc are not
included in the operating system specific profile (as it is
gathered from the kernel that contains no details about
Glibc’s heap implementation), they must be provided in
a different way. In the context of Glibc, the most relevant
debug information to have are the struct details for mal-
loc chunk, malloc state and heap info. Also relevant,
but not absolutely necessary, are the constant offsets for
the two global variables main arena and mp . The offset
to main arena is only important if there are no further
arenas and no freed bin chunks in the main heap to get
the main arena (see also Section III-D), and primarily
relevant to differentiate allocated chunks from fastbin
chunks. The offset to mp is relevant for result verifi-



cation (see Section IV-A) and to detect the existence of
hidden MMAPPED chunks (see Section III-F). Besides
that, these constant offsets are not important to explore
the heap.

The ideal scenario is that the investigator has some sort
of access to the debug information of the Glibc library
in use, and can provide it to the plugin. While debug
information is typically in certain sections in the ELF
file, they normally cannot be extracted from the mapped
file in memory, as those sections are normally not loaded
in memory. They hence must be gathered e.g. from the
ELF file on disk, which requires in most scenarios local
access to the target system. This information can then
be provided to the plugins (see Section III-G) and the
HeapAnalysis class will use them internally.

But in the context of a Glibc profile, there might
be a further option, depending on the current scenario.
The problem with custom kernels and the need for a
custom profile is not that similar to the generation of a
Glibc profile. While most distributions build their own
Glibc version with custom compile flags and/or patches
to the source code, which potentially results at least
in varying constant offsets, the retrieval of this debug
information might be much easier. The reason is that
many Linux distributions come with binary packages.
That means, software like Glibc is not compiled on the
target system, but the software is pre-compiled. If the
investigator knows which Glibc version is in use, he
simply can download the binary package (most of the
times also the debug package) from a repository server,
and extract the relevant information from it.

All the previous options might however not always be
available.

• The target system could be locked and the creden-
tials are unknown

• Local access might be available but the operating
system is outdated and the repositories do not serve
the necessary packages anymore.

• The Glibc version could be customized and com-
piled without debug/symbol information, while no
details are available on how it has been compiled
(e.g. with which compile flags).

If the investigator still manages to get a working
profile for the target operating system (e.g. by building
a similar machine and creating it), but fails to generate
an appropriate Glibc profile (e.g. the one used on the
target system is customized), he is in most cases still
able to investigate the heap of user space processes with
plugins using the HeapAnalysis class. The reason is, the
Python module containing the HeapAnalysis class comes

with two additional classes called GlibcProfile32 and
GlibcProfile64 (the first for x86 and the second for x64
architectures). They implement a basic Glibc profile that
serves the relevant structs for the currently supported
Glibc versions (see Section III-G). If the user does not
provide debug information, a profile is automatically
loaded using one of these classes.

The only task at this point, besides choosing between
a 32 bit or 64 bit architecture profile, is to determine the
Glibc version used by the current process. This is impor-
tant, because with version 2.23, the malloc state struct
got a new field (attached threads; see also Section II-D2
on page 15). The question to answer is hence: Is the
Glibc version smaller or greater/equal to 2.23? As no de-
bug information is available, this detail must be gathered
elsewhere. At this point, the linked list of vm area struct
structs comes again into play. By examining the file
object of the vm area struct structs, holding the mapped
Glibc module, this version information can typically be
extracted from memory. The library’s filename on disk
contains normally the version string (e.g. libc-2.23.so)
and thus does the file object. This version information
decides now, which version of the malloc state struct
definition is used and the Glibc profile is loaded.

The only debug information missing in this last sce-
nario are the constant offsets for mp and main arena.
But as mentioned in the beginning, this fact does not
always prevent a successful heap investigation.

D. Getting the Main Arena

One of the first tasks the HeapAnalysis class is per-
forming during its initialization is to locate the main
arena. Besides holding important information such as
the arena’s size and the bin pointers, its location within
the mapped Glibc library is a good indicator that the
information examined during the search process are
correct (the details will be explained in this section).

The class HeapAnalysis implements different tech-
niques to get the main arena. The most reliable method to
get the main arena can be used if debug information, or
more precisely, the constant offset for the main arena
symbol is available. This is typically only the case, if
the investigator gathered the relevant debug information
upfront (e.g. from the target system) and provides them
to the plugin (gathering it from the memory dump is
not easily possible; see Section III-C on the preceding
page). If that is the case, the location of the main arena
can be easily calculated. As the main arena offset is
relative to the start of the mapped Glibc file and not
an absolute address in the virtual address space, the



only information besides the main arena offset needed
is the virtual address where that mapped file begins.
This is one of the reasons, why for loading the Glibc
profile, the linked list of vm area struct structs is needed
(mentioned in Section III-B on page 26; the other reason
is covered in Section III-C on page 27). The relevant task
is now to go through the vm area struct structs, examine
their file member and find the vm area struct struct for
the beginning of the mapped Glibc library (typically the
one with the lowest vm start value). The last step is
now to add the main arena offset to the virtual address
pointing to the beginning of the mapped Glibc library,
and dereference the data at that address as a malloc state
instance.

If however the constant offset for main arena is not
available, the main arena cannot be directly determined
and hence is searched via two different techniques. The
first assumes that there is more than one thread and
hence also more than one arena. As only the main arena
struct is stored in the mapped Glibc library, all others are
typically located at the beginning of a memory region,
right after a heap info struct (see also Section II-D1
on page 14). So, for each memory region described
by a vm area struct struct (with some exceptions like
mapped file regions or stack frames), the beginning of
it is treated as a heap info struct. If its ar ptr field
points right after itself and its prev field is null (the first
heap info struct points to no other heap info instance
and if it sits right before the arena, it is the first instance),
the arena pointed to by ar ptr is temporarily saved. If at
the end at least one arena could be identified, it is tested
whether or not following their next member ends up
somewhere in the memory region of the mapped Glibc
library. If that is the case, the address pointing in the
Glibc is treated as the main arena.

If no further arenas could be identified (that means,
there is only the main heap and potentially some
MMAPPED chunks), the second technique is used. It
leverages the fact that each bin chunk holds a circular
doubly linked list. The idea is to follow the bk pointer of
a bin chunk, until it leads to the main arena. To get such
a bin chunk (there is yet no arena, whose bins could be
used), every chunk on the main heap is examined for
its PREV INUSE bit (see also Section II-C2 on page 7).
If this flag is unset in any chunk, the previous chunk is
most probably a freed bin chunk. The previous chunk’s
bk field is now followed, chunk after chunk, in order to
eventually end up in the main arena. If at some point, the
bk field points into the mapped Glibc library, the main
arena is most probably found.

In this scenario, there is however still a problem. The
bk field points to the middle of the arena (to a bin)
and not to the beginning. While it would be possible to
exactly determine the position within that main arena by
examining the chunk’s size (each bin typically contains
only chunks of a given size (range)) this approach is not
always perfectly reliable because of varying bin sizes
(see Section II-C4 on page 11). The method used instead
to get to the beginning of the main arena is a search for
the top chunk pointer. There are two reasons to use this
approach:

• The offset of the top chunk pointer in the mal-
loc state is fixed for a specific Glibc instance and
hence reliable. So, if the virtual address of that field
is found, the distance to the beginning of the arena
can be easily calculated.

• There needs to be a reliable process to correlate an
expected field with the current value. The top field
serves such a correlation, as the chunk that it points
to, should reach until the end of the memory region
(the top chunk’s offset plus its size).

The process to get to the top field is now to walk
backwards from the current bin, treat each pointer sized
value as a pointer and check if it points inside the main
heap and meets the requirements of the top chunk. The
step size for walking back is equal to the pointer size
for the current architecture, as between the top chunk
and the bins are no other data types than pointers. As
soon as the top field is found, the main arena’s address is
calculated by subtracting the top field’s offset within the
malloc state struct from the found top field’s memory
address.

As described in Section II-C4 on page 11, fastbin
chunks do not use the bk pointer and are not linked in a
circular list. Hence, even if they could be easily identified
on the heap (which is not the case; see the explanation
in Section III-B on page 26 regarding the dummy arena
scenario), only with freed fastbin chunks there is no
trivial way back to the corresponding malloc state struct.
This is why at this point (all other techniques failed),
a dummy arena is used (see also Section III-E on the
following page).

The dummy arena is a last resort kind of way to
cope with the fact that there are no options left to get
the main arena. The reason it is created anyways, is
to be able to use all internal and public methods (see
also Section III-A on page 25) normally, without having
to change the internal logic. The dummy arena is in
fact only an instance of the malloc state class, whose
fields have however no connections with any data of



the process’ virtual address space. The connection to
the heap is created with separate class attributes that
are set during the initialization (see Section III-B on
page 26). For implementation specific information see
also Section III-E.

No matter how the main arena is gathered, the sanity
check regarding the arena count (described in Sec-
tion III-B on page 26) is done afterwards (except for
the dummy arena scenario).

E. The Dummy Arena

The dummy arena is necessary if the real main arena
cannot be found, which has already been discussed in
Section III-D on page 28. As also described in that sec-
tion, the dummy arena is an instance of the malloc state
class that has no connection to the process’ virtual
address space. That means, its members do not read any
information from actual memory and hence must be set
manually. The separation from the process’ address space
is also a protection mechanism, to prevent arbitrary data
from being accidentally used for this instance or that
setting some values might get written in the memory
dump (if e.g. write support within Rekall is activated).

From an implementation point of view, the problem
whith this dummy object arises, when trying to access
members that are pointers. To understand the problem,
it is necessary to understand how using attributes of
such objects works within Rekall. As those objects have
typically an associated address space, the framework
knows where to look for any data if a specific virtual
address is given. This means, when using e.g. the top
field of a malloc state instance, which is a pointer to
a malloc chunk struct, the framework knows that this
field points inside the process’ address space and hence
tries to automatically dereference this struct right there.
The result of accessing the malloc state’s top member is
normally an instance of the malloc chunk class, which
represents the malloc chunk struct with the values from
the actual top chunk.

With the dummy arena, this context is however not
existent. While it would be theoretically possible to set
the top field to the address of the top chunk within
the process’ address space, using the actual top chunk
via this field would not work, as the framework tries
to access this address without the correct address space
(leading normally to a malloc chunk instance with zero
values for all fields). To efficiently circumvent this
problem, the attribute top chunk has been added to the
malloc state class, which not holds an address but an
already instantiated malloc chunk object for the actual

top chunk and with correct address space. As the address
spaces of the malloc state object does not have to cor-
relate with any objects contained in additional attributes,
they can exist side by side.

The top chunk attribute is the only additional attribute
in the context of the dummy arena. While it would be
necessary to do it for all pointer fields, the rest are
not needed in the dummy arena scenario. There are
no further identified arenas (hence the next field is not
required), it was not possible to find any small or large
bin chunks and fastbin chunks cannot easily be detected
by solely looking at chunks in memory (see also Sections
III-B and III-D). The only task left for the dummy arena
is to set the system mem member. As this is a not a
pointer but a simple numeric field, it can be set without
having to worry about address spaces.

F. MMAPPED Regions

While the identification of memory areas belonging
to an arena is in most scenarios pretty reliable (see
Section III-B on page 26 and Section III-D on page 28),
identifying regions containing MMAPPED chunks is not.
The reasons are:

• There is a lack of distinctive structs or reliable
pointers to them.

• Any unnamed mapped memory region might con-
tain MMAPPED chunks and they can be located
anywhere in the process space.

It seems like pointers to those chunks are at most
saved in stack frames of functions working with them,
but not in any book keeping struct. So one way to
identify them could be to interpret all pointer-sized bytes
from all stack segments (from all threads) as pointers,
follow them and verify the information residing at that
position. This approach has however two problems:

1) It is pretty error prone (interpreting arbitrary data
as pointers) and, depending on the stack size, pretty
time consuming (each pointer must be read, fol-
lowed, the data it points to initiated as a chunk
object and its values tested).

2) It might miss some MMAPPED chunks. In the
case, where an MMAPPED chunk pointer is not
used anymore, its value might get overwritten by
newer stack frames, but if the chunk has never been
freed, it still exists in the memory space, serving
potentially valuable information.

Because of the lack of alternatives, the current ap-
proach to decide, whether or not a certain memory region
contains MMAPPED chunks, is to perform a plausibil-
ity check. Because a memory region containing solely



MMAPPED chunks (differing examples are described
later in this section) also begins with an MMAPPED
chunk, the first bytes are treated as such, and tested for
the following characteristics:

• The prev size field must have a value of zero.
• The chunk’s size (the value of the size field without

any flags) must be at least as large as the page size.
• The chunk’s size must be evenly divisible by the

page size.
• The chunk’s offset plus its size must not exceed the

boundary of the containing memory region.
• The location of the chunk must be evenly divisible

by the page size (primarily useful for subsequent
and hidden MMAPPED chunks).

• The PREV INUSE and NON MAIN AREA bits
must be unset and the IS MMAPPED bit set.

Only if all of those properties are given, the cor-
responding memory region is considered to contain
MMAPPED chunks. Those checks are also done on any
subsequent data of the same memory region, before they
get included as chunks.

While MMAPPED chunks are normally within an
exclusive mapped memory region, it can happen that
those chunks are placed at the bottom of a mapped
memory region, containing also different data such as
stack segments (see Figure 16). As starting the search
for MMAPPED chunks (in the stack scenario) at the
beginning of the memory region might lead to false
positives (interpreting stack data as chunks), a certain
method is used, which is called EBP unrolling within
this work. The basic approach is to follow all saved EBP
pointers, starting with the base pointer gathered from the
pt regs struct (used to save register values on context
changes). As each EBP value points to the next saved
EBP, just following those pointers leads to the first saved
EBP, probably located near the beginning of the stack
segment. This process is also illustrated in Figure 16.

Once the offset of the first saved EBP is identified,
the next step is to search backwards, from this point on,
for the first MMAPPED chunk. As MMAPPED chunks
are only located at addresses evenly divisible by 4096
(minimum page size), only such addresses are examined.
In cases where the EBP value does not point to a saved
EBP in the stack segment (because it is e.g. used for
carrying different data) the method stays basically the
same, except it does no EBP unrolling and starts at
the beginning of the memory region with the backwards
search.

In cases where the missing MMAPPED chunks are not
located after stack segments but hide somewhere else, the

search scope must be extended while increasing the risk
of false positives. The only regions that can be excluded
are the stack and heap segments that have been already
examined and those holding the content of mapped files
(the vm area struct struct references a file object), as
they could not be identified to ever contain other data
(which would also be very unexpected, as those regions
represent the file’s content). The search process for this
case stays the same, but without the EBP unrolling. After
the first hit within a memory region (no matter if after
a stack or somewhere else), this first MMAPPED chunk
is being used to walk the potentially following chunks.

If after the search process the values still do not corre-
spond, but some new MMAPPED have been identified,
there is no simple way of verifying the validity of those
chunks (they could be arbitrary data mistakenly inter-
preted as MMAPPED chunks). This is why an additional
verification step is performed that gives the investiga-
tor an indication whether or not the newly identified
MMAPPED chunks seem to be valid. As mentioned in
the beginning, pointer to MMAPPED chunks are at most
saved in stack frames, which is why all stack segments
are now searched for pointers to those chunks. When at
least one pointer to a potential MMAPPED chunk can
be identified, this fact is treated as a good indicator for
this chunk’s validity. Because pointer used in user space
processes point not to the beginning of a chunk but to
the beginning of the data part (see also Section II-D3
on page 17), this needs to be taken into account (the
appropriate offset must be added to the pointer, before
starting to search).

The logging mechanism offered by Rekall is used
to inform the investigator about the whole process de-
scribed in this section. This includes the initialization
of the search, the result of the stack pointer search
and whether or not the identified MMAPPED chunks
correspond at the end with the information from the
malloc par struct. The output about the stack pointer
search reports for how many of the new MMAPPED
chunks a pointer on the stack has been found. Listing 17
shows an example of this verification step while using the
heapinfo plugin on a process with hidden MMAPPED
chunks. Because all MMAPPED chunks could be found
(and hence the final values correspond with the mp
values), no stack pointer search is performed.

In order to prevent false positives, the HeapAnalysis
class starts a search for hidden MMAPPED chunks only
if the current information about MMAPPED chunks
seem to be incorrect (will be explained in the following
Section).
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Fig. 16: Hidden MMAPPED chunks - EBP Unrolling

2016-09-25 15:39:42,346:WARNING:rekall.1:The values from the malloc_par struct don’t correspond to our
found MMAPPED chunks. This indicates we didn’t find all MMAPPED chunks and that they probably hide
somewhere in a vm_area. So we now try to carve them, what might lead to false postives.

2016-09-25 15:39:42,346:WARNING:rekall.1:Seems like we didn’t find (all) MMAPPED chunks behind stack
frames. We now search in all anonymous vm_areas for them, which might however lead to false
positives.

2016-09-25 15:39:42,827:WARNING:rekall.1:Seems like all missing MMAPPED chunks have been found.

Listing 17: Warning messages while searching for hidden MMAPPED chunks

G. The Heap Analysis Plugins

The four main heap analysis plugins are:

heapinfo Provides an abstract overview over the number
of arenas, chunks and their sizes.

heapdump Dumps all allocated and freed chunks to disk
in separate files for further analysis.

heapsearch Searches all chunks for the given string,
regex or pointer(s).

heaprefs Examines the data part of the given chunk(s)
for any references to other chunks.

They will be demonstrated in Section V.
1) The heapinfo Plugin: An example output for the

heapinfo plugin can be seen in Listing 18. The first
line shows the command line call to execute the plugin,
followed by the plugin’s analysis result. The plugin
output has been split up into two parts to make it more
readable.

The command line arguments are as follows:

mem.dump The ram dump from the Arch instance.
arch.json The Linux profile generated for the Arch

instance.
heapinfo The plugin name to be executed with the Rekall

framework.
arch-libc 2.23.json The Glibc profile, containing debug

information like struct definitions in Vtype and con-
stant offsets.

8703 The process ID to be analyzed.

For each analyzed process, exactly one line of output
is generated. The following list explains all columns of
that output.

PID The PID of the analyzed process.
Arenas The amount of discovered malloc state in-

stances.
Heap I. The amount of discovered heap info instances.
Non MMAPPED chunks The amount of all main and

thread heap chunks, excluding MMAPPED chunks.
N.M. chunks size The summarized size of all main and



rekall -f mem.dump --profile arch.json heapinfo --glibc_profile arch-libc_2.23.json 8703

PID Arenas Heap I. Non MMAPPED chunks N.M. chunks size
------ -------- --------- -------------------- ------------------
8703 3 12 448 16368064

MMAPPED chunks MMAPPED size Freed chunks Freed size
---------------- -------------- -------------- ------------
20 10043392 159 28464

Listing 18: Heapinfo example Output

thread heap chunks (excluding MMAPPED chunks),
taken from their size member.

MMAPPED chunks The amount of all MMAPPED
chunks.

MMAPPED size The size of all MMAPPED chunks,
taken from their size member.

Freed chunks The amount of all freed bin and fastbin
chunks, not including top chunks.

Freed size The size of all freed bin and fastbin chunks
(not including top chunks), taken from their size
member.

Besides the standard output, this plugin is capable
of printing further details like struct information. This
is accomplished by command line options, that can be
specified by the investigator. The following list shows
these options:

print objects Prints each arena struct (malloc state)
and its top chunk and for each thread arena the
corresponding heap info structs and their first chunk.

print allocated, print freed, print mmapped These
options print the malloc chunk structs of the cor-
responding type (allocated: all allocated chunks in-
cluding MMAPPED chunks, but makes them distin-
guishable with special markers; freed: bin and fast-
bin chunks, which are also marked; mmapped: only
MMAPPED chunks).

print mallinfo Prints the content of the mallinfo struct
according to the description from Section IV-A on
page 35 (useful for manual result verification).

There are also two command line options that are
directly served by the HeapAnalysis class and hence
available for every plugin using this class:

glibc profile This option expects a file containing the
Glibc debug information, that are loaded internally
(see Section III-C on page 27).

prevent chunk preservation This option prevents in-
ternally any chunk preservation mechanism. It is use-
ful in cases where a process has a huge amount of

chunks and the memory resources of the analysis
system are limited.

2) The heapdump Plugin: The heapdump plugin
dumps all chunks in separate files using unique file-
names. The relevant function to get a chunk’s data is
to string, mentioned in Section III-A on page 25. As
it uses the formulas discussed in the subsections of
Section II-D on page 14, it e.g. omits the content of
the fd and bk and the next chunk’s prev size field,
when dumping a small bin chunk and additionally
the fd nextsize and bk nextsize members for large bin
chunks. The omitted data is indicated within the filename
by CHUNKSIZE and DUMPEDSIZE. Some file name
examples can be seen in Listing 20. The format used is:
PID.CHUNK-TYPE_OFFSET_CHUNKSIZE_DUMPEDSIZE.

PID The PID of the process. It is useful when dumping
multiple processes in the same directory.

CHUNK-TYPE Can be one of the following: allocated-
main, allocated-thread, allocated-mmapped, freed-bin,
freed-fastbin, top and bottom.

OFFSET The address of the malloc chunk struct within
the virtual address space.

CHUNKSIZE The size taken from the chunk’s size
member (no flag bits).

DUMPEDSIZE The amount of bytes that have been
dumped into the file. This value can in some cases
be zero (most often with bottom chunks, but also
e.g. with a freed bin chunk with a size of 16; see
Section II-D4 on page 18), but the file is created
anyways to not hide the existence of that chunk from
the investigator.

The only command line option this plugin introduces
is dump dir, which specifies the destination folder in
which all chunks should be dumped.

3) The heapsearch Plugin: The heapsearch plugin
helps the investigator in identifying a chunk of interest.
This can e.g. be done by searching for a specific string
or pointer, which is expected to be contained in a chunk.
When a match is found, the according malloc chunk



rekall -f mem.dump --profile arch.json heapdump --glibc_profile arch-libc_2.23.json
-D destinationFolder 8703

2016-09-19 01:37:37,039:WARNING:rekall.1:Chunk preservation has been activated. This might consume large
amounts of memory depending on the chunk count. If you are low on free memory space (RAM), you
might want to deactivate this feature with the prevent_chunk_preservation cmd option. The only
downside of deactivation is in some cases a longer plugin runtime.

Pid: 8703 - Dumped 478 allocated, 139 freed bin, 20 freed fastbin and 3 top chunks.

Listing 19: Heapdump example Output

8703.allocated-main-chunk_offset-0x9125408_size-16_dumped-12.dmp
8703.freed-bin-chunk_offset-0x9126df8_size-88_dumped-72.dmp
8703.freed-fastbin-chunk_offset-0xb56fffe0_size-16_dumped-8.dmp
8703.top-chunk_offset-0x965cd38_size-123592_dumped-123584.dmp

Listing 20: Filename examples for the heapdump Plugin

struct is printed, including its virtual address (see List-
ing 21 for an example output).

The following list shows the plugin’s options:

pointers Prints chunks that contain exactly the
given pointer(s). The pointer(s) can be given as
(hexa)decimal numbers.

regex Searches all chunks with the given regex and prints
all hits.

string Searches all chunks for the given string and prints
all hits.

chunk addresses Expects address(es) belonging to a
chunk(s) of interest, and prints all chunks having a
pointer somewhere into the data part of that chunk(s).

search struct Includes the malloc struct fields in the
search process, which means the size field for
all chunks and prev size, fd, bk, fd nextsize and
bk nextsize for bin chunks. This is normally not
desired and hence deactivated by default.

4) The heaprefs Plugin: The heaprefs plugin analyzes
the data part of a chunk for pointer(s) to other chunks.
If it finds one, it marks the data part containing the
pointer and prints the address of the target chunk in the
Comment column (see Listing 24 for an example output).
The heaprefs plugin introduces only one option:

chunk addresses The address(es) belonging to chunks
of interest. Those chunks are then examined for ref-
erences to other chunks.



Result for needle(s) 162898536

[malloc_chunk malloc_chunk] @ 0x09B5A3A8
0x00 prev_size [unsigned int:prev_size]: 0xFFFFFFFF
0x04 size [unsigned int:size]: 0x00000061
0x08 fd <malloc_chunk Pointer to [0x09ad0c50] (fd)>
0x0C bk <malloc_chunk Pointer to [0x8ed2ca21] (bk)>
0x10 fd_nextsize <malloc_chunk Pointer to [0x00000001] (fd_nextsize)>
0x14 bk_nextsize <malloc_chunk Pointer to [0x099c75e0] (bk_nextsize)>

Listing 21: Example output for the heapsearch Plugin

IV. EVALUATION

This section describes the evaluation of the HeapAnal-
ysis class and its plugins.

A. Result Verification

The verification of results is an important and ele-
mentary step in order to show the reliability of our
methods and techniques. All tests have been conducted in
the following environments while using different Glibc
versions:

• Arch Linux 32 bit, x86, Kernel Version 4.4.5-
ARCH, Glibc Versions: 2.20, 2.21, 2.22, 2.23 and
2.24

• Arch Linux 64 bit, x64, Kernel Version 4.4.5-
ARCH, Glibc Versions: 2.20, 2.21, 2.22, 2.23 and
2.24

The HeapAnalysis class implements multiple func-
tions, which compare the currently examined data with
our expectations on every chunk while processing mem-
ory:

• Test for correct flags (e.g. NON MAIN ARENA for
chunks in a thread arena).

• Is the chunk’s address aligned according to
aligned ok (see Section II-D2)?

• Size checks (see also Section II-C2):
– Is the size larger or equal to the MINSIZE?
– Does the size of the chunk exceed the boundaries

of the current memory region?
– Is the size evenly divisible by MAL-

LOC ALIGNMENT?
• Allocation status tests (for main and thread arena

chunks): Is a presumably allocated chunk part of
any bin or fastbin? Has a chunk following a freed
bin chunk the PREV INUSE flag set? . . .

• In the case of MMAPPED chunks there are some
additional tests (see Section III-F for more details).

There are two further tests to mention, which are
done while walking chunks in memory. As described
in Section II-D2 on page 15, the first chunk must

not necessarily follow directly the heap info struct, but
depending on the heap info and also the malloc state
struct’s size, there can be a gap of some bytes (which
consists solely of null bytes). The verification step in
this case is, to predict the chunk’s size, examine the
bytes after the heap info struct and look for the first
non-zero bytes which should be the first chunk’s size
field. If that location does not meet the expectation, this
indicates incorrect debug information and a warning is
printed.

The second test verifies, that walking the chunks in
memory leads to the expected end. This is in the case of
the main arena and the last heap info struct of a thread
arena done by looking for the top chunk, whose size
should point to the end of the current memory region. In
the case of all other heap info structs, the test searches
for the bottom chunks (see Section II-E on page 20).
If walking the chunks does not lead to the expected end
(either top or bottom chunks), again a warning is printed.

Regarding MMAPPED chunks, there is another ver-
ification step which involves the global variable mp
(an instance of the malloc par struct; see also Section
II-C1). While it does not offer any details about main
or thread arenas and their chunks, its fields n mmaps
and mmapped mem hold the number and size of all
MMAPPED chunks, respectively. If the offset for mp
is provided, the HeapAnalysis class uses the struct to
verify the number and size of all identified MMAPPED
chunks. If there are any discrepancies, it tries to identify
hidden MMAPPED chunks and if that does not resolve
the issue, it prints a warning (see Section III-F).

Regarding size comparisons, there are two further
verification steps. The first one compares the size of
all identified chunks (arena related but also MMAPPED
chunks) and the corresponding heap info and mal-
loc state structs with the size of their memory regions
(described by vm area struct structs), while taking slack
space for the heap and MMAPPED regions into account
(see Section II-D1 and Section II-D3). The second one



compares the system mem values of the identified arenas
with their related memory regions.On any deviation, a
warning is printed.

The last two checks that should be mentioned, try
to verify the amount of identified arenas (malloc state
structs) and heap info structs. As described in Sec-
tion II-C1 on page 5, the maximum number of arenas
is either determined by the one CPU core scenario (3
on a 32 bit and 9 on a 64 bit architectures), defined by
the macro NARENAS FROM NCORES or manually set
via mallopt (the malloc par struct’s arena max field).
The arena verification functionality first tries to deter-
mine which one of the three is relevant and afterwards
compares that value with the number of identified arenas.
The workflow is as follows:

• First, the availability of mp is tested. If that fails,
it aborts, as without access to the arena max field,
no reliable statement about the correct number of
arenas can be made.

• The next step is to test the arena max value. If this
field has not been set manually, it typically has a
value of zero.

• If it is not zero, this value is used for verification.
• Otherwise, the number of CPU cores is gathered

from the plugin cpuinfo, offered by Rekall.
• If it is more than one, the maximum number is the

result from the NARENAS FROM NCORES macro,
if not, it is NARENAS_FROM_NCORES+ 1.

• The last step is to compare the maximum number
with the actual number of identified arenas. If it is
higher than the maximum, a warning is printed.

As it was not possible to identify a maximum value
for heap info structs, the verification in this case is
different. The goal is to verify, whether or not some
heap info structs have been mistakenly not found (e.g.
from an unidentified arena), while assuming that all
relevant arenas have been already identified. The general
approach is to investigate all anonymous mappings ex-
cept for the one containing the main heap, interpret the
beginning of that region as a heap info struct, gather
all potentially following heap info struct and examine
their ar ptr field. If the field of one of those potential
heap info structs points to a known arena, it is treated as
a valid instance. If one of those valid heap info structs
is not in the list of already known heap info instances,
a warning is printed.

B. Completeness

While the results in this work do not cover 100% of
Glibc’s heap implementation, various steps have been

performed to identify all relevant information and sce-
narios, relevant for the memory forensics perspective.

• Various tests with self-written programs.
– Varying order of allocations (e.g. at first

MMAPPED chunks, then main arena chunks; has
led to the hidden MMAPPED chunks scenario).

– Allocation of thousands of chunks in all are-
nas (led to the main heap distributed over two
vm area struct structs and to multiple heap info
structs within one memory region; see e.g. Sec-
tion II-D1).

– All special cases we are aware of.
– . . .

• Source code analysis and verification with proof of
concept code.

• HeapAnalysis’s internal verifications, that revealed
e.g. the bottom chunk scenario (the test for hitting
the bottom of a memory region, described in Sec-
tion IV-A on the previous page).

• The evaluation done in Section V, which showed
for the given applications that it was possible to
completely gather the information in question from
the heap.

• Tests on varying operating systems, architectures
and Glibc versions (see also Section III-G on
page 32).

• Performing a heap analysis on every applicable
process (all processes except kernel threads) in the
environments described in Section III-G on page 32,
while performing the verifications described in Sec-
tion IV-A on the previous page.

V. APPLICATION ON REAL WORLD SCENARIOS

This section illustrates the application of our plugins
on real world examples. This is on the one hand done
by describing the analysis process itself and on the
other hand by highlighting the advantage of using our
plugins instead of a raw search through the entire heap.
The analysis performed in the following subsections was
done using a black box approach, which means that,
if not specified otherwise, no process related details
from the source code, like e.g. struct definitions, were
necessary to be gathered beforehand.

A. zsh

The previously described bash plugin of Rekall and
Volatility searches the whole heap space for timestamp
strings that are prefixed with a hashtag, and afterwards
searches it again for a history struct that points to the
timestamp, in order to identify the issued command



Result for needle(s) #$@%&*()

[malloc_chunk malloc_chunk] @ 0x09BCF830

Listing 22: Using heapsearch to search for chunks con-
taining issued zsh commands

2324 4025 262a 2829 0000 0000 #$@%&*()....

Listing 23: Hexdump of a chunk containing an issued
zsh command

strings. The output of the plugin is a list of command
entries, each consisting of the issued command and the
corresponding timestamp. Our goal is to identify the
same information for the zsh. The corresponding analysis
in this section has been done in the same environments
listed in Section IV-A.

The zsh process to analyze contained 142 executed
commands in its history (when examining the history
with the history command); the first one was ps aux

and the last one #$@%&*(). The first part of the anal-
ysis process has been done in a black box approach,
meaning no internal information about how zsh stores
commands or time information have been gathered in
any way beforehand. The only knowledge basis for this
approach was the information already available regarding
the bash command analysis. The first attempt was to find
timestamp strings that are prefixed with a hashtag. Zsh
does not however seem to store timestamps in the same
way as bash. The next step was to search for issued
commands somewhere in chunks using the heapsearch
plugin. Listing 22 shows a result excerpt for searching
the string #$@%&*() with heapsearch, revealing a chunk
at address 0x09BCF830 which contains the command of
interest.

While commands could sometimes be identified in
more than one chunk, each command seemed to be at
least in one allocated chunk that only holds the command
and some trailing bytes at the end. Listing 23 shows a
hexdump of a chunk containing an issued zsh command.

As those chunks did not offer any meta information
(e.g. at which time the command was issued), the next
step was to find pointers to those chunks by again
using the heapsearch plugin, but this time providing the
address of the chunk that contains the issued command.
It was possible to find exactly one pointer for each tested
command in a separate allocated chunk with a size of
56 byte (for the x86 environment).

After examining multiple of those chunks (using the
dumped content from the heapdump plugin), the follow-
ing information could be derived:

• Bytes 5-8 contain a pointer to the issued command.
• Bytes 25-32 are 2 timestamps, stored as four byte

integers. The first four byte are the start time at
which the command has been issued and the last
four bytes are the time when the command ended.

• Bytes 41-44 contain the command counter.
When now examining those chunks for references

using the heaprefs plugin (see Listing 24; the output
has been stripped and modified for this work), it shows
that bytes 1-4, 5-8 (the command pointer), 13-16, 17-20
and 33-36 point to other chunks. The start addresses of
those chunks are listed in the Comment column, while
the bytes containing the pointers are marked with square
brackets in the Data column.

By combining those insights with zsh’s source code,
the relevant history entry struct histent reveals two of
those pointers: the fields down (bytes 17-20) and up
(bytes 13-16). Those fields are used to reference the
previous/next histent entry and hence allow a reliable
traversal of histent instances. As the linked list of histent
entries is circular, just walking one direction is sufficient
to get all histent entries. The other pointers are not
important for the current examination.

The last task at this point was to build a plugin, that
automatically extracts those command information. To
be able to traverse the histent list, the first step is to
reliably identify one histent entry. As commands can be
contained in chunks of various sizes and do not offer
any searchable pattern, the approach is to find chunks
containing the histent struct. The containing chunk’s size
is 56 byte for x86 and 96 byte for x64 architectures
(the size results from the struct’s size plus the bytes
required to get an aligned chunk size; see Section II-C2).
Because there are also non relevant chunks with the
same size, they need to be distinguished. As each histent
entry should have a pointer to a chunk containing the
command and a pointer to the next and previous histent
entry, the test consists of checking whether or not those
pointers reference an already known chunk. If the test
result is positive, the last check is to walk the up and
down pointers to the next and previous histent struct and
test if their down/up member points to the current chunk.
If this is the case too, the current chunk is treated as a
histent struct and the command history is walked using
the down member.

Listing 25 shows an example output of the zsh plugin
(the output has been stripped).



Examining chunk at offset 0x9C22938, belonging to the given address(es): 0x9c22938

Data Comment
----------------------------------------- ---------------------------------------------------
[b046c009] [38f8bc09] 02000000 [7081c209] Chunk pointer(s): 0x9c046a8, 0x9bcf830, 0x9c28168
[c042c109] 00000000 65b27658 65b27658 Chunk pointer(s): 0x9c142b8
[a0d4c009] 01000000 e7060000 00000000 Chunk pointer(s): 0x9c0d498
38000000 31000000 01000000 98510000

Listing 24: Analyzing a chunk for references with heapref

PID # Started Ended Command
--- --- --------------------- --------------------- ------------
277 1 2016-03-31 23:51:09Z 2016-03-31 23:51:09Z ’ps aux’
...
277 142 2016-08-31 11:55:43Z 2016-08-31 11:55:43Z ’#!$@%&*()’

Listing 25: Example output for the zsh plugin

While it was possible to reconstruct the bash history
with a raw search (because of the timestamp string),
this approach would not have worked for the zsh, as
the timestamp is not saved as a string with an additional
hashtag but only as a four byte integer. Because, in ad-
dition, no further searchable patterns could be identified
during the analysis, a raw search is most probably not
applicable in this context and hence shows the advantage
of using the heap analysis plugins.

B. KeePassX

The second tool examined was the password manager
KeePassX (version 0.4.3) and has been tested in the
following environments:

• Ubuntu 15.10 32 bit, x86, Kernel Version 4.2.0-16-
generic, Glibc Version 2.21

• Ubuntu 15.10 64 bit, x64, Kernel Version 4.2.0-16-
generic, Glibc Version 2.21

The setup for the following analysis consisted of a
KeePassX database, which contained several password
entries that have been separated in two folders. Each
password entry had a value for Title, Username, URL
and Comment. When the database has been opened for
analysis purposes, only the first folder was opened while
leaving the second folder completely untouched.

Our first attempt was to find the unencrypted master
password and the passwords of entries somewhere in the
process space, but they could not be found. The unhidden
password for a currently open password entry however,
has been successfully observed in three allocated chunks
during 5 tests with different password manager entries.
The three chunks persist as long as the password entry
shows the unhidden password. If the password is hidden
again, two of the three chunks are freed but one stays

allocated. Only if the entry window is closed, all chunks
containing the password are freed. Depending on the
size of the freed chunk, the password is overwritten
within milliseconds up to a few minutes or even hours
by a new allocation. While freed chunks, containing
passwords of a length range from 1 to at least 40, are
normally reallocated within a few seconds or minutes,
there have been instances where a freed chunk containing
a password of that size has been consolidated in a
bigger freed chunk. As some bigger chunk sizes are
not allocated that often (e.g. in the range of a few
hundred bytes), the password might remain for probably
a few hours in this chunk, but is also harder to find
(it is surrounded by other data). Furthermore, the actual
password has never been observed in the first 18 bytes
of the chunks data part (see also the following analysis),
which means that even in a case where the freed chunk
is placed in a large bin, the password is not overwritten
by any bin pointers on an x86 architecture.

After the password field, the next step was to look for
further fields of interest. The fields selected for this anal-
ysis were Title, Username, URL and Comment. KeePassX
stores the full field content in allocated chunks right
after the database has been opened. This is not only true
for fields like the title, URL and comment, but also the
username field, which in the case of KeePassX is shown
only in asterisks in the overview and hence should not be
needed unencrypted within the heap at that moment. To
sum up: If a password database is opened and not locked,
all fields from the overview (except the password field)
from all password manager entries in all folders can be
extracted from the heap. In order to analyze and compare
the data from different chunks (containing the field
strings), the heapdump plugin has been used to dump



them in separate files. The following Listing 26 shows
the hex dump output of a dumped chunk, containing a
username (in this case yyyyyyyy_user5_AAAAAAAAB).

After comparing various chunks containing strings
from the same type (such as usernames) and strings
from other types, the following properties can be derived
(which are also true for the unhidden password):

• The string is always 16-bit little endian encoded.
• The string does not start at the beginning of the

chunk’s data part, but exactly after byte 18. Most
probably because the string is part of a struct/object.

• Bytes 5-8 and 9-12, respectively, correlate with the
string’s size, while bytes 9-12 state the correct size
(the size is the number of characters represented
by the encoded byte sequence, not the number of
bytes). Both are probably instances of a four byte
unsigned integer. The value from bytes 4-8 has been
exactly by one larger than the value from bytes 9-12
(see also Listing 26: 0x19 vs. 0x18).

• Bytes 13-16 point to the beginning of the string.
• The string is followed by 4 null bytes.
• Depending on the size of the string, there were

additional bytes at the end (kind of padding bytes),
ranging in the most cases from zero till 6 byte.
There have been however seldom cases, in which
this number went up to 14 bytes (6 plus the amount
of bytes until the next higher chunk size).

Bytes 1-4 did not change and while bytes 13-18 and
the bytes after the string at the end changed a lot, they
did not show any reliable coherence to a certain type or
password manager entry.

The next step was to search for any pointers to a field
string using the heapsearch plugin. While a search for
the string’s start address did not reveal any references
(except for the one contained in the same chunk), search-
ing for the beginning of the data part of that chunk
revealed at least one pointer in another chunk. When
analyzing this chunk with the heaprefs plugin, it reveals
12 pointers to other chunks. Following those pointers
shows that four of them point to the chunks containing
the Title, Username, URL and Comment strings. After
analyzing more password entries, it was possible to make
the fair assumption that for each password entry, there
is a chunk of size 96 byte (in the x86 environment)
that references at least those four fields. That means, by
searching for chunks of the same size and examining the
pointers at the given offsets, it is possible to gather the
Title, Username, URL and Comment string of the same
password entry. This information was used to create

a proof of concept plugin by using the HeapAnalysis
class, which automatically extracts these four fields for
all password entries. Listing 27 shows an example output
of that plugin (the output has been stripped, especially
regarding the strings to fit in one line).

It should be mentioned that without the information
about the start address from the chunk context, finding
references to the field strings would have been more dif-
ficult, while in the worst case preventing the possibility
to correlate the various strings to one password entry.

C. Wget

The tests in this section have been done in the follow-
ing environments:

• Arch Linux 32 bit, Kernel Version 4.4.5-ARCH,
Glibc Version 2.23, Wget Version 1.17.1

• Arch Linux 32 bit, Kernel Version 4.4.5-ARCH,
Glibc Version 2.23, Wget Version 1.18.1

• Arch Linux 64 bit, Kernel Version 4.4.5-ARCH,
Glibc Version 2.23, Wget Version 1.17.1

• Ubuntu 15.10 32 bit, Kernel Version 4.2.0-16-
generic, Glibc Version 2.21, Wget Version 1.16.1

Wget is a utility to download resources from a speci-
fied URL. It can be used for that purpose by simply call-
ing it with an URL, which will immediately result in an
attempt to download the desired resource and store it in
a local file for further usage. As online resources can be
protected by authentication mechanisms, it offers options
to provide e.g. username and password information. The
fact that it exists on nearly every Linux instance makes it
interesting for attackers who have compromised a Linux
system and e.g. want to download additional malware
for their attack.

In the case of an incident, where attackers downloaded
certain files from external resources using Wget and
erased those traces afterwards from the file system, an in-
vestigator might want try to download those resources for
analysis purposes. If the URLs are known, but the access
is protected by authentication, the need for credentials
arises. When the HTTP Basic Authentication (Franks,
1999) is used, extracting those information is fairly easy.
It can e.g. be established by simply searching over
the whole memory dump for the command line call
which immediately reveals the username and password
as shown in Listing 28.

Even when the password is not given on the com-
mand line, it can simply be decoded from the Base64
encoded authentication string contained within the HTTP



0100 0000 1900 0000 1800 0000 7258 4b09 ............rXK.
e0ff 7900 7900 7900 7900 7900 7900 7900 ..y.y.y.y.y.y.y.
7900 5f00 7500 7300 6500 7200 3500 5f00 y._.u.s.e.r.5._.
4100 4100 4100 4100 4100 4100 4100 4100 A.A.A.A.A.A.A.A.
4200 0000 0000 ffff ffff ffff B...........

Listing 26: Hex dump of a chunk’s data part, containing a KeePassX username field

Entry Title URL Username Comment
------ ---------- -------- --------- ------------
1 y_title1_A y_url1_A y_user1_A y_comment1_A
2 y_title2_A y_url2_A y_user2_A y_comment2_A
...

Listing 27: Example output for the KeePassX plugin

# strings memory_dump.raw | grep wget | grep http
wget --http-user=root --http-password=S3cret http://172.16.239.1:8000/malware.exe
...

Listing 28: Extracting credentials from command line calls

Authorization header (Franks, 1999). Listing 29 shows
an example extraction.

If however, an authentication mechanism like HTTP
Digest authentication (Franks, 1999) is used, and the
password is not provided on the command line, the
necessary password might still be in the memory dump
but cannot simply be spotted. A replay attack, using the
HTTP Authorization header retrieved from the memory
dump does not normally work either, as the server sends
on each authentication request a new nonce, which is in-
corporated in the digest generation and hence leads each
time to different authentication material. It is however
possible to reliably retrieve the password from a certain
allocated chunk within the heap.

While the amount of allocated chunks ranges from
about 86 for Wget versions 1.16.1 and 1.17.1 up to
2445 for version 1.18.1, the amount of chunks for the
relevant sizes containing the password ranges only from
one up to four. As in all 21 test runs (using the same
or differing passwords), all non-relevant chunks of the
same size contained only scattered printable characters
(see Listing 30 for an example), it should be most of the
time pretty easy to find the correct one.

The password was, in all 21 test runs located at the
beginning of the chunk’s data part, followed by some null
bytes and arbitrary further content (in some cases only
null bytes, in other cases strings). An example output
can be seen in Listing 31. The password in this case is
asdfghjklZXasdfghjklZX.

The relevant chunk sizes differ mainly in relation to
the password length. The following list summarizes the
results.

• In all tested environments with a password length
smaller or equal to 118, the relevant chunk size was
128.

• In all tested environments except for the 64 bit Arch
Linux with a password length greater than 118, the
relevant chunk size was 248.

• In the 64 bit Arch Linux environment with a pass-
word length greater than 118, the relevant chunk
size was 256.

As can be seen in Listing 31, there is no leading
pattern before the password, which would be easily
recognizable in a memory dump while performing a raw
search (without the chunk details). Also the content after
the password within the same chunk does not offer a
reliable search pattern, as this content changed multiple
times. A reliable raw memory search would hence only
be possible, if the string to search (in this case the
password) would be known up front. As this is a rather
theoretical scenario, this analysis shows the advantage
of using the introduced plugins. Instead of relying on a
searchable pattern or the content of the data, it is possible
to identify the password by simply focusing on a chunk
size.

It should be noted that Wget processes normally only
live for a few seconds and their data might in most cases
already be overwritten by other processes. But if the
process data is still available or the Wget call e.g. did
not reach the endpoint yet and hence is still running (the
timeouts last in many cases quite long), the password
might be extractable.



# strings memory_dump.raw | grep ’Authorization: Basic’
Authorization: Basic cm9vdDpTM2NyZXQ=

Listing 29: Extracting credentials from the HTTP Authorization Header

0000000: 40c0 f501 0000 0000 b034 d57a fd7e 0000 @........4.z.˜..
0000010: 4d00 0000 0000 0000 0200 0000 0000 0000 M...............
0000020: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000030: ffff ffff 0000 0000 0700 0000 0000 0000 ................
0000040: d434 d57a fd7e 0000 e334 d57a fd7e 0000 .4.z.˜...4.z.˜..
0000050: e434 d57a fd7e 0000 e834 d57a fd7e 0000 .4.z.˜...4.z.˜..
0000060: ed34 d57a fd7e 0000 f334 d57a fd7e 0000 .4.z.˜...4.z.˜..
0000070: f734 d57a fd7e 0000 .4.z.˜..

Listing 30: Hex dump of a chunk with size 128, containing no password

0000000: 6173 6466 6768 6a6b 6c5a 5861 7364 6667 asdfghjklZXasdfg
0000010: 686a 6b6c 5a58 0000 0000 0000 0000 0000 hjklZX..........
0000020: 7563 006b 6f5f 4b52 2e65 7563 4b52 006b uc.ko_KR.eucKR.k
0000030: 6f5f 4b52 006b 6f5f 4b52 2e65 7563 4b52 o_KR.ko_KR.eucKR
0000040: 006c 6974 6875 616e 6961 6e00 6c74 5f4c .lithuanian.lt_L
0000050: 542e 4953 4f2d 3838 3539 2d31 3300 6e6f T.ISO-8859-13.no
0000060: 5f4e 4f00 6e62 5f4e 4f2e 4953 4f2d 3838 _NO.nb_NO.ISO-88
0000070: 3539 2d31 006e 6f5f 59-1.no_

Listing 31: Hex dump of a chunk with size 128, containing the password

D. Building a Plugin

This section shows how a new plugin can be cre-
ated using the HeapAnalysis class (see Section III-G
on page 32). The current example creates a plugin to
extract field information for password entries within the
password manager tool KeePassX version 0.4.3, based on
the results from Section V-B on page 38. These fields
include the title, username, URL and comment string
and are arranged according to the password entry they
belong to. It should be noted, that this plugin has only
been tested in the environment described in Section V-B
on page 38.

The plugin works in essence as follows. It retrieves all
allocated chunks and searches for the ones containing the
references to field strings. If it finds one, it gathers those
field strings and prints them. The following explanations
refer to Listing 32 and describe the plugin in more detail.

Lines 2 and 4 The new plugin imports the heap analysis
module and extends the HeapAnalysis class.

Line 9 The name of the new plugin, which is necessary
to be able to call it from the command line.

Line 11 The framework’s function to render the output,
which is the starting point of this plugin.

Lines 12 and 13 For each given task, the HeapAnalysis
instance is initialized.

Lines 15, 17 and 20 This dictionary is filled with all

allocated chunks, which can be accessed by their data
offset. This eases the access to chunks containing field
strings later on.

Line 19 As the field strings are contained in allo-
cated chunks, this plugin searches only in those
chunks (including main arena, thread arena and
MMAPPED chunks), by using the public function
get_all_allocated_chunks from the HeapAnal-
ysis class.

Lines 23 - 27 Defines the columns of this plugin’s
output.

Line 29 The offset where the extractable strings start,
within the chunk’s data part (see also Section V-B on
page 38).

Line 30, 54 and 55 Responsible for printing each
password entry.

Lines 32, 35 and 36 The first step is to find the chunks
containing pointers to the field strings. Those chunks
have typically a size of 96 byte.

Line 38 Retrieves the data part of the current chunk.
Line 40 and 52 Holds the title, username, URL and

comment string for the current password entry, by
using the Python method repr . The advantage of
using repr is that no data is hidden from the user’s
eyes (if e.g. null bytes are at the beginning of the
string, they would normally not be recognizable).

Line 34, 42, 43, 45, 56 and 57 Each chunk with a size



of 96 byte is examined for potential chunk pointers
at the offsets mentioned in Section V-B on page 38.
If there is a chunk for each pointer, this the current
chunk is considered as a password entry. If one of the
pointers does not belong to a known chunk, the next
chunk with a size of 96 byte is examined.

Line 47 and 48 Calculates the size of the current field’s
string.

Line 50 and 51 The currend field string is extracted and
decoded.

Listing 33 shows its ouput, which has been stripped
to fit in one line (marked with three dots before and
after a string). Entry 16 shows a complete output, but
also an entry that is not a password entry created for
the test scenario. The same goes with the entries 8, 9
and 11. These have also been observed after creating a
new database and adding only one entry. The assumption
is that they serve internal purposes and are held in all
KeePassX processes, while probably using the same or
a similar struct as password entries (which is why they
are appearing in the output).

The u in the beginning and the surrounding single
quotes within Listing 33 are the result from using the
repr function (as mentioned earlier) and are around every
string (only in this case stripped for most of the strings).
The advantage of using repr is that no data is hidden
from the user’s eyes (if e.g. non-printable characters are
part of the string), as can be seen in entry 16 for the
URL string.



1 import struct
2 from rekall.plugins.linux import heap_analysis
3
4 class Keepassx(heap_analysis.HeapAnalysis):
5 """Gathers password entries for keepassx.
6 The retrieved content of those entries comprises the username, title, URL and Comment.
7 """
8
9 __name = "keepassx"

10
11 def render(self, renderer):
12 for task in self.filter_processes():
13 if self.init_for_task(task):
14
15 chunks_dict = dict()
16
17 data_offset = self._libc_profile.get_obj_offset("malloc_chunk", "fd")
18
19 for chunk in self.get_all_allocated_chunks():
20 chunks_dict[chunk.v() + data_offset] = chunk
21
22
23 renderer.table_header([("Entry", "entry", "6"),
24 ("Title", "title", "25"),
25 ("URL", "url", "25"),
26 ("Username", "username", "25"),
27 ("Comment", "comment", "44")])
28
29 string_offset = 18
30 entry_number = 1
31
32 for chunk in chunks_dict.values():
33
34 try:
35 if not chunk.chunksize() == 96:
36 continue
37
38 p_entry_data = chunk.to_string()
39
40 field_strings = []
41
42 for i in [12, 16, 20, 36]:
43 pointer = struct.unpack("I", p_entry_data[i:i+4])[0]
44
45 curr_chunk_data = chunks_dict[pointer].to_string()
46
47 string_size = struct.unpack("I", curr_chunk_data[8:12])[0]
48 string_size *= 2
49
50 curr_string = curr_chunk_data[string_offset:string_offset+string_size]
51 curr_string = curr_string.decode("utf-16-le")
52 field_strings.append(repr(curr_string))
53
54 renderer.table_row(entry_number, *field_strings)
55 entry_number += 1
56 except (KeyError, UnicodeDecodeError):
57 pass

Listing 32: Example KeePassX Extractor Plugin



Entry Title URL Username Comment
----- -------------------- ------------------ ------------------- ------------------------
1 ...yy_title3_AA... ...yy_url3_AA... ...yy_user3_AA... ...yy_comment3_AA...
2 ...yy_title4_AA... ...yy_url4_AA... ...yy_user4_AA... ...yy_comment4_AA...
3 ...yy_title5_AA... ...yy_url5_AA... ...yy_user5_AA... ...yy_comment5_AA...
4 ...yy_title10_AA... ...yy_url10_AA... ...yy_user10_AA... ...yy_comment10_AA...
5 ...yy_title11_AA... ...yy_url11_AA... ...yy_user11_AA... ...yy_comment11_AA...
6 ...yy_title13_AA... ...yy_url13_AA... ...yy_user13_AA... ...yy_comment13_AA...
7 ...yy_title1_AA... ...yy_url1_AA... ...yy_user1_AA... ...yy_comment1_AA...
8 u’’ u’’ u’’ u’’
9 u’’ u’’ u’’ u’’
10 ...yy_title9_AA... ...yy_url9_AA... ...yy_user9_AA... ...yy_comment9_AA...
11 u’’ u’’ u’’ u’’
12 ...yy_title14_AA... ...yy_url14_AA... ...yy_user14_AA... ...yy_comment14_AA...
13 ...yy_title7_AA... ...yy_url7_AA... ...yy_user7_AA... ...yy_comment7_AA...
14 ...yy_title12_AA... ...yy_url12_AA... ...yy_user12_AA... ...yy_comment12_AA...
15 ...yy_title2_AA... ...yy_url2_AA... ...yy_user2_AA... ...yy_comment2_AA...
16 u’q’ u’/\x00\u0814 \x00’ u’’ u’’
17 ...yy_title6_AA... ...yy_url6_AA... ...yy_user6_AA... ...yy_comment6_AA...
18 ...yy_title8_AA... ...yy_url8_AA... ...yy_user8_AA... ...yy_comment8_AA...

Listing 33: Example KeePassX Extractor Plugin Output

VI. CONCLUSION AND FUTURE WORK

This section summarizes this work, highlights some
limitations, gives a prospect on future work and con-
cludes the results.

A. Summary

This paper focuses on analyzing the heap in the
context of Linux processes with the research objective
to support an investigator in analyzing data contained
in user space processes. First, an in-depth understanding
of Glibc’s heap implementation was established, which
is documented in Section II. The analysis focused on
how and where heap related data is stored from a
memory forensics perspective. Second, this knowledge
has been used to build plugins for the memory forensics
framework Rekall (Google Inc, 2016c), which analyze
the heap of a Linux user space process and offer access
to the identified chunks. The implementation details are
documented in Section III and describe in particular an
algorithm to identify hidden MMAPPED chunks. As
producing reliable results is a crucial requirement in
computer forensics, Section IV covers information that
enable the verification of the gathered results. To illus-
trate the usefulness of our implementation, Section V
describes the black box analysis process of userspace
applications, using the example of zsh and KeePassX.

B. Limitations

As already explained by Cohen (2015) for pagefiles,
swap space is in some scenarios a crucial resource during
the user space process analysis, which is not addressed
in our work so far. When the plugins introduced in this

work are used on a process with swapped out pages,
containing heap related data, they will most probably fail
in reliably analyzing the heap and extracting all chunks.

One of the goals of this work was to serve a process-
like view on data contained in the memory. While this
has been accomplished to the maximum extent of details
that the heap is offering in this context (the location of a
specific information and its size), it was not possible to
extract information about the type of data. The reason is
that the heap does not store any data type information.
One way to still correlate a certain chunk with a specific
type exists in a scenario where the data type and the
size of the data itself is known up front. By searching
for chunks of that size, the investigator might be able to
gather data of a specific type. This approach requires
however further tests on those chunks (as shown in
Section V-A), as there might be more chunks with the
same size containing different data.

As stated in Section II-A, the usage of a certain
heap implementation is not bound to a specific operating
system. In cases where a different heap implementation
is used, the findings and plugins from this work will
most probably not be applicable, but instead need to be
performed analogue for those implementations.

To this date, our HeapAnalysis class and the plugins
only support the analysis of Linux processes on the
mentioned architectures and Glibc versions. The infor-
mation provided in this work and the technical report can
however be used to add support for further architectures
or operating systems.

While it is possible to analyze the heap of a user space
process without supplying debug information, it is not



reliable in all cases. Beside the fact that the plugins will
most certainly fail in analyzing the heap when any of the
relevant structs has changed (malloc chunk, malloc state
or heap info), the results might still be incomplete
if the pointer to the global variable mp is missing.
Without mp it is not possible to reliably determine if
all MMAPPED chunks have been discovered and as the
search for hidden MMAPPED chunks is not initiated in
this case, there might be at least one MMAPPED chunk
missing in the output.

Besides hidden MMAPPED chunks, there is one fur-
ther scenario, in which the HeapAnalysis class might
miss chunks: If the analysis process mistakenly left out
a vm area struct containing a whole arena, the results
seem still to be correct but miss the arena’s chunks.
This case might happen in a scenario, where no debug
information for the main arena’s location have been
provided and the main arena search process is not able to
find it, which also means that this process was unable to
find any thread arena. As no valid pointer to any arena is
available in that scenario, there might be an undetected
arena and hence unnoticed chunks. While this case is
theoretically possible, the implemented functionality to
detect such scenarios did not miss any arena during our
evaluation.

C. Future Work

The limitation considered most important is the miss-
ing support for swap space. In order to fully analyze
the heap of a process, the access to all pages containing
heap related data must be ensured. The acquisition and
integration of swap space into the memory forensics
process is hence considered a fundamental step for
further user space process analysis.

To increase the support of the HeapAnalysis class,
the plugins could be tested on further architectures
and adjusted appropriately if required. An analysis of
further heap implementations such as jemalloc would in
addition, allow to analyze the heap allocations of pro-
cesses from applications such as Firefox. Furthermore,
when conducting an appropriate analysis in the context
of FreeBSD processes, it would also include another
operating system.

D. Conclusion

The plugins introduced in this paper simplify the anal-
ysis process and enable the identification of information
in memory that cannot easily be found using a pattern
matching approach. These plugins and the documented
details about heap objects in memory can also be used to

support further research in the field of memory forensics
and help forensic investigators to clarify an incident or
crime. Furthermore, this paper demonstrated the analysis
of user space processes while illustrating the advantage
of having heap details during the analysis process.



VII. APPENDIX

A. Documentation in comments

21 /*
22 This is a version (aka ptmalloc2) of malloc/free/realloc written by
23 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
24
25 There have been substantial changes made after the integration into
26 glibc in all parts of the code. Do not look for much commonality
27 with the ptmalloc2 version.
28
29 * Version ptmalloc2-20011215
30 based on:
31 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
32
33 * Quickstart
34
35 In order to compile this implementation, a Makefile is provided with
36 the ptmalloc2 distribution, which has pre-defined targets for some
37 popular systems (e.g. "make posix" for Posix threads). All that is
38 typically required with regard to compiler flags is the selection of
39 the thread package via defining one out of USE_PTHREADS, USE_THR or
40 USE_SPROC. Check the thread-m.h file for what effects this has.
41 Many/most systems will additionally require USE_TSD_DATA_HACK to be
42 defined, so this is the default for "make posix".
43
44 * Why use this malloc?
45
46 This is not the fastest, most space-conserving, most portable, or
47 most tunable malloc ever written. However it is among the fastest
48 while also being among the most space-conserving, portable and tunable.
49 Consistent balance across these factors results in a good general-purpose
50 allocator for malloc-intensive programs.
51
52 The main properties of the algorithms are:
53 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
54 with ties normally decided via FIFO (i.e. least recently used).
55 * For small (<= 64 bytes by default) requests, it is a caching
56 allocator, that maintains pools of quickly recycled chunks.
57 * In between, and for combinations of large and small requests, it does
58 the best it can trying to meet both goals at once.
59 * For very large requests (>= 128KB by default), it relies on system
60 memory mapping facilities, if supported.
61
62 For a longer but slightly out of date high-level description, see
63 http://gee.cs.oswego.edu/dl/html/malloc.html
64
65 You may already by default be using a C library containing a malloc
66 that is based on some version of this malloc (for example in
67 linux). You might still want to use the one in this file in order to
68 customize settings or to avoid overheads associated with library
69 versions.
70
71 * Contents, described in more detail in "description of public routines" below.
72
73 Standard (ANSI/SVID/...) functions:
74 malloc(size_t n);
75 calloc(size_t n_elements, size_t element_size);
76 free(void* p);
77 realloc(void* p, size_t n);
78 memalign(size_t alignment, size_t n);
79 valloc(size_t n);
80 mallinfo()
81 mallopt(int parameter_number, int parameter_value)
82
83 Additional functions:
84 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
85 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
86 pvalloc(size_t n);
87 cfree(void* p);
88 malloc_trim(size_t pad);
89 malloc_usable_size(void* p);
90 malloc_stats();



91
92 * Vital statistics:
93
94 Supported pointer representation: 4 or 8 bytes
95 Supported size_t representation: 4 or 8 bytes
96 Note that size_t is allowed to be 4 bytes even if pointers are 8.
97 You can adjust this by defining INTERNAL_SIZE_T
98
99 Alignment: 2 * sizeof(size_t) (default)

100 (i.e., 8 byte alignment with 4byte size_t). This suffices for
101 nearly all current machines and C compilers. However, you can
102 define MALLOC_ALIGNMENT to be wider than this if necessary.
103
104 Minimum overhead per allocated chunk: 4 or 8 bytes
105 Each malloced chunk has a hidden word of overhead holding size
106 and status information.
107
108 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
109 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
110
111 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
112 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
113 needed; 4 (8) for a trailing size field and 8 (16) bytes for
114 free list pointers. Thus, the minimum allocatable size is
115 16/24/32 bytes.
116
117 Even a request for zero bytes (i.e., malloc(0)) returns a
118 pointer to something of the minimum allocatable size.
119
120 The maximum overhead wastage (i.e., number of extra bytes
121 allocated than were requested in malloc) is less than or equal
122 to the minimum size, except for requests >= mmap_threshold that
123 are serviced via mmap(), where the worst case wastage is 2 *
124 sizeof(size_t) bytes plus the remainder from a system page (the
125 minimal mmap unit); typically 4096 or 8192 bytes.
126
127 Maximum allocated size: 4-byte size_t: 2ˆ32 minus about two pages
128 8-byte size_t: 2ˆ64 minus about two pages
129
130 It is assumed that (possibly signed) size_t values suffice to
131 represent chunk sizes. ‘Possibly signed’ is due to the fact
132 that ‘size_t’ may be defined on a system as either a signed or
133 an unsigned type. The ISO C standard says that it must be
134 unsigned, but a few systems are known not to adhere to this.
135 Additionally, even when size_t is unsigned, sbrk (which is by
136 default used to obtain memory from system) accepts signed
137 arguments, and may not be able to handle size_t-wide arguments
138 with negative sign bit. Generally, values that would
139 appear as negative after accounting for overhead and alignment
140 are supported only via mmap(), which does not have this
141 limitation.
142
143 Requests for sizes outside the allowed range will perform an optional
144 failure action and then return null. (Requests may also
145 also fail because a system is out of memory.)
146
147 Thread-safety: thread-safe
148
149 Compliance: I believe it is compliant with the 1997 Single Unix Specification
150 Also SVID/XPG, ANSI C, and probably others as well.
151
152 * Synopsis of compile-time options:
153
154 People have reported using previous versions of this malloc on all
155 versions of Unix, sometimes by tweaking some of the defines
156 below. It has been tested most extensively on Solaris and Linux.
157 People also report using it in stand-alone embedded systems.
158
159 The implementation is in straight, hand-tuned ANSI C. It is not
160 at all modular. (Sorry!) It uses a lot of macros. To be at all
161 usable, this code should be compiled using an optimizing compiler
162 (for example gcc -O3) that can simplify expressions and control
163 paths. (FAQ: some macros import variables as arguments rather than



164 declare locals because people reported that some debuggers
165 otherwise get confused.)
166
167 OPTION DEFAULT VALUE
168
169 Compilation Environment options:
170
171 HAVE_MREMAP 0
172
173 Changing default word sizes:
174
175 INTERNAL_SIZE_T size_t
176 MALLOC_ALIGNMENT MAX (2 * sizeof(INTERNAL_SIZE_T),
177 __alignof__ (long double))
178
179 Configuration and functionality options:
180
181 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
182 USE_MALLOC_LOCK NOT defined
183 MALLOC_DEBUG NOT defined
184 REALLOC_ZERO_BYTES_FREES 1
185 TRIM_FASTBINS 0
186
187 Options for customizing MORECORE:
188
189 MORECORE sbrk
190 MORECORE_FAILURE -1
191 MORECORE_CONTIGUOUS 1
192 MORECORE_CANNOT_TRIM NOT defined
193 MORECORE_CLEARS 1
194 MMAP_AS_MORECORE_SIZE (1024 * 1024)
195
196 Tuning options that are also dynamically changeable via mallopt:
197
198 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
199 DEFAULT_TRIM_THRESHOLD 128 * 1024
200 DEFAULT_TOP_PAD 0
201 DEFAULT_MMAP_THRESHOLD 128 * 1024
202 DEFAULT_MMAP_MAX 65536
203
204 There are several other #defined constants and macros that you
205 probably don’t want to touch unless you are extending or adapting malloc. */
206
207 /*
208 void* is the pointer type that malloc should say it returns
209 */

Listing 34: Glibc 2.23(malloc/malloc.c): Documentation at the beginning

1125 /*
1126 malloc_chunk details:
1127
1128 (The following includes lightly edited explanations by Colin Plumb.)
1129
1130 Chunks of memory are maintained using a ‘boundary tag’ method as
1131 described in e.g., Knuth or Standish. (See the paper by Paul
1132 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1133 survey of such techniques.) Sizes of free chunks are stored both
1134 in the front of each chunk and at the end. This makes
1135 consolidating fragmented chunks into bigger chunks very fast. The
1136 size fields also hold bits representing whether chunks are free or
1137 in use.
1138
1139 An allocated chunk looks like this:
1140
1141
1142 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1143 | Size of previous chunk, if allocated | |
1144 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1145 | Size of chunk, in bytes |M|P|
1146 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1147 | User data starts here... .
1148 . .



1149 . (malloc_usable_size() bytes) .
1150 . |
1151 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1152 | Size of chunk |
1153 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1154
1155
1156 Where "chunk" is the front of the chunk for the purpose of most of
1157 the malloc code, but "mem" is the pointer that is returned to the
1158 user. "Nextchunk" is the beginning of the next contiguous chunk.
1159
1160 Chunks always begin on even word boundaries, so the mem portion
1161 (which is returned to the user) is also on an even word boundary, and
1162 thus at least double-word aligned.
1163
1164 Free chunks are stored in circular doubly-linked lists, and look like this:
1165
1166 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1167 | Size of previous chunk |
1168 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1169 ‘head:’ | Size of chunk, in bytes |P|
1170 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1171 | Forward pointer to next chunk in list |
1172 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1173 | Back pointer to previous chunk in list |
1174 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1175 | Unused space (may be 0 bytes long) .
1176 . .
1177 . |
1178 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1179 ‘foot:’ | Size of chunk, in bytes |
1180 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181
1182 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1183 chunk size (which is always a multiple of two words), is an in-use
1184 bit for the *previous* chunk. If that bit is *clear*, then the
1185 word before the current chunk size contains the previous chunk
1186 size, and can be used to find the front of the previous chunk.
1187 The very first chunk allocated always has this bit set,
1188 preventing access to non-existent (or non-owned) memory. If
1189 prev_inuse is set for any given chunk, then you CANNOT determine
1190 the size of the previous chunk, and might even get a memory
1191 addressing fault when trying to do so.
1192
1193 Note that the ‘foot’ of the current chunk is actually represented
1194 as the prev_size of the NEXT chunk. This makes it easier to
1195 deal with alignments etc but can be very confusing when trying
1196 to extend or adapt this code.
1197
1198 The two exceptions to all this are
1199
1200 1. The special chunk ‘top’ doesn’t bother using the
1201 trailing size field since there is no next contiguous chunk
1202 that would have to index off it. After initialization, ‘top’
1203 is forced to always exist. If it would become less than
1204 MINSIZE bytes long, it is replenished.
1205
1206 2. Chunks allocated via mmap, which have the second-lowest-order
1207 bit M (IS_MMAPPED) set in their size fields. Because they are
1208 allocated one-by-one, each must contain its own trailing size field.
1209
1210 */
1211
1212 /*
1213 ---------- Size and alignment checks and conversions ----------
1214 */
1215
1216 /* conversion from malloc headers to user pointers, and back */

Listing 35: Glibc 2.23(malloc/malloc.c): Chunk documentation
B. Mmap threshold for mallopt

24 #define HEAP_MIN_SIZE (32 * 1024)



25 #ifndef HEAP_MAX_SIZE
26 # ifdef DEFAULT_MMAP_THRESHOLD_MAX
27 # define HEAP_MAX_SIZE (2 * DEFAULT_MMAP_THRESHOLD_MAX)
28 # else
29 # define HEAP_MAX_SIZE (1024 * 1024) /* must be a power of two */
30 # endif
31 #endif

Listing 36: Glibc 2.23(malloc/arena.c): HEAP MAX SIZE definition
4792 case M_MMAP_THRESHOLD:
4793 /* Forbid setting the threshold too high. */
4794 if ((unsigned long) value > HEAP_MAX_SIZE / 2)
4795 res = 0;
4796 else
4797 {
4798 LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value,
4799 mp_.mmap_threshold, mp_.no_dyn_threshold);
4800 mp_.mmap_threshold = value;
4801 mp_.no_dyn_threshold = 1;
4802 }
4803 break;

Listing 37: Glibc 2.23(malloc/malloc.c): Part of mallopt responsible for setting new mmap threshold
C. Bin index Macros

1470 #define NBINS 128
1471 #define NSMALLBINS 64
1472 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
1473 #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ)
1474 #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
1475
1476 #define in_smallbin_range(sz) \
1477 ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE)
1478
1479 #define smallbin_index(sz) \
1480 ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\
1481 + SMALLBIN_CORRECTION)
1482
1483 #define largebin_index_32(sz) \
1484 (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\
1485 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1486 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1487 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1488 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1489 126)
1490
1491 #define largebin_index_32_big(sz) \
1492 (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\
1493 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1494 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1495 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1496 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1497 126)
1498
1499 // XXX It remains to be seen whether it is good to keep the widths of
1500 // XXX the buckets the same or whether it should be scaled by a factor
1501 // XXX of two as well.
1502 #define largebin_index_64(sz) \
1503 (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\
1504 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1505 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1506 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1507 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1508 126)
1509
1510 #define largebin_index(sz) \
1511 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1512 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1513 : largebin_index_32 (sz))
1514
1515 #define bin_index(sz) \



1516 ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz))

Listing 38: Glibc 2.23(malloc/malloc.c): bin index Macros
D. Bottom chunks

The source code for the ”Bottom chunks” program, referenced in Section II-E.
1 #include <pthread.h>
2 #include "library.c"
3
4
5
6 void* threadFunc(void* arg) {
7 printf("Before malloc in thread \n");
8 display_mallinfo();
9 getchar();

10 fillHeapWithChunks(1,0);
11 printf("After first call to fillHeapWithChunks\n");
12 display_mallinfo();
13 getchar();
14 fillHeapWithChunks(0,8);
15 printf("After second call to fillHeapWithChunks\n");
16 display_mallinfo();
17 getchar();
18 fillHeapWithChunks(0,16);
19 printf("After third call to fillHeapWithChunks\n");
20 display_mallinfo();
21 getchar();
22 fillHeapWithChunks(0,20);
23 printf("After fourth call to fillHeapWithChunks\n");
24 display_mallinfo();
25 getchar();
26 char* addr;
27 addr = malloc(1000);
28 printf("After additional allocation to create bottom chunks for fourth filled heap.\n");
29 display_mallinfo();
30 malloc_stats();
31 getchar();
32 printf("Right before Thread is going to die\n");
33 getchar();
34 printf("Thread is dead\n");
35 }
36
37 int main(int argc, char** argv) {
38 pthread_t t1;
39 void* s;
40 int ret;
41 char* addr;
42
43 printf("This example creates the different states of bottom chunks:%d\n",getpid());
44 addr = malloc(1000);
45 strncpy(addr, "Main Arena bytes", malloc_usable_size(addr));
46 display_mallinfo();
47 printf("\nMallinfo, right before thread creation\n");
48 getchar();
49
50
51 ret = pthread_create(&t1, NULL, threadFunc, NULL);
52 if(ret)
53 {
54 printf("Thread creation error\n");
55 return -1;
56 }
57 ret = pthread_join(t1, &s);
58 if(ret)
59 {
60 printf("Thread join error\n");
61 return -1;
62 }
63 return 0;
64 }

Listing 39: Creates different bottom chunk scenarios



E. Bottom chunk contains data Program

1 #include <pthread.h>
2 #include <stdlib.h>
3 #include "library.c"
4
5 #define BASE 128
6 #if __WORDSIZE == 32
7 # define SUBTRACT 8
8 #else
9 # define SUBTRACT 16

10 #endif
11
12 int glibc_minor_version;
13
14
15 void* threadFunc(void* arg) {
16 // fills heap but leaves some space for a last chunk
17 fillHeapWithChunks(1, BASE, glibc_minor_version);
18
19 char* addr;
20
21 // creates the last chunk, which contains only H characters
22 addr = malloc(BASE - SUBTRACT);
23 memset(addr, ’H’, malloc_usable_size(addr));
24
25 // last chunk gets freed, while leaving the H’s in memory
26 free(addr);
27
28 // creating another chunk but leaving enough space for the extractable part of the first bottom chunk
29 addr = malloc(BASE - SUBTRACT * 2);
30
31 // simply creates a large chunk, so the next heap_info and the bottom chunks are created
32 addr = malloc(BASE * 100);
33
34 printf("\nThere should be now one bottom chunk, containing data of the last freed chunk\n\n");
35
36 display_mallinfo();
37 getchar();
38 printf("Right before Thread is going to die\n");
39 getchar();
40 printf("Thread is dead\n");
41 }
42
43 int main(int argc, char** argv) {
44 pthread_t t1;
45 void* s;
46 int ret;
47 char* addr;
48
49 if (argc < 2){
50 printf("This program expects the glibc minor version as first argument. E.g. 23\n");
51 exit(1);
52 }
53
54 printf("This example creates a bottom chunk that contains data (’H’ characters). PID:%d\n",getpid());
55
56 glibc_minor_version = atoi(argv[1]);
57
58
59 ret = pthread_create(&t1, NULL, threadFunc, NULL);
60 if(ret)
61 {
62 printf("Thread creation error\n");
63 return -1;
64 }
65 ret = pthread_join(t1, &s);
66 if(ret)
67 {
68 printf("Thread join error\n");
69 return -1;
70 }
71 return 0;
72 }



Listing 40: The Bottom chunk contains data Program code
F. Bottom chunk contains data

The first Listing 41 shows the output for the program listed in Section VII-E on the preceding page when using
debug information, and the second output in Listing 42 shows it without supplying debug information. The Bottom
chunk contains data program has been started with an argument of 23 (for the Glibc Version) and the program
has been run until the string There should be now one bottom chunk, containing data of the last freed chunk was
printed. Additionaly in this case, the content of the dumped bottom chunk, created with the heapdump plugin is
shown in Listing 43 (printed with the command line tool xxd), to verify the expected four H characters are in the
dumped file.

1 PID Arenas Heap I. Non MMAPPED chunks N.M. chunks size MMAPPED chunks MMAPPED size Freed chunks Freed size
2 ------ -------- --------- -------------------- ------------------ ---------------- -------------- -------------- ------------
3 30365 2 2 21 1062440 0 0 0 0

Listing 41: heapinfo Output for Bottom chunk contains data with debug information
1 PID Arenas Heap I. Non MMAPPED chunks N.M. chunks size MMAPPED chunks MMAPPED size Freed chunks Freed size
2 ------ -------- --------- -------------------- ------------------ ---------------- -------------- -------------- ------------
3 2016-09-24 19:57:57,578:WARNING:rekall.1:It seems like the debug information for the mp_ offset are missing. This means some checks/

verifications can’t be done.
4 2016-09-24 19:57:57,579:WARNING:rekall.1:As it seems like we don’t have debug information for the main arena and/or we didn’t find the libc

filename in the vm_areas, we now try to retrieve the main_arena via some different techniques for pid 30365.
5 30365 2 2 21 1062440 0 0 0 0

Listing 42: heapinfo Output for Bottom chunk contains data without debug information

1 xxd 30365.bottom-chunk_offset-0xb6cfffe8_size-12_dumped-4.dmp
2

3 0000000: 4848 4848 HHHH

Listing 43: heapinfo Output for Bottom chunk contains data without debug information

G. Bin Distribution

This Section shows on the one hand the source code for the library program in Listing 44, defining various
structs and macros used during the research, and on the other hand the output of the generate bin map function for
different scenarios (mentioned later) in the following Listings (see also Section II-C4 on page 11). This function uses
the bin index macro defined in the library program, which origins from the Glibc source code (see Section VII-C
on page 50).

1 #include <malloc.h>
2 #include <stdio.h>
3 #include <string.h>
4 #include <stddef.h>
5 #include <unistd.h>
6

7

8 #ifndef INTERNAL_SIZE_T
9 #define INTERNAL_SIZE_T size_t

10 #endif
11

12 struct malloc_chunk;
13

14 struct malloc_chunk {
15

16 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
17 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
18

19 struct malloc_chunk* fd; /* double links -- used only if free. */
20 struct malloc_chunk* bk;
21

22 /* Only used for large blocks: pointer to next larger size. */



23 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
24 struct malloc_chunk* bk_nextsize;
25 };
26

27

28 /* The corresponding word size */
29 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
30

31 //# define MALLOC_ALIGNMENT 16
32 # define MALLOC_ALIGNMENT (2 *SIZE_SZ)
33

34 /* The corresponding bit mask value */
35 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
36

37 #define NBINS 128
38 #define NSMALLBINS 64
39 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
40 #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ)
41 #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
42

43 #define FASTCHUNKS_BIT (1U)
44

45 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
46 #define MINSIZE (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ˜MALLOC_ALIGN_MASK))
47

48 #define REQUEST_OUT_OF_RANGE(req) \
49 ((unsigned long) (req) >= \
50 (unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE))
51

52 #define request2size(req) \
53 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
54 MINSIZE : \
55 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ˜MALLOC_ALIGN_MASK)
56

57

58 #define checked_request2size(req, sz) \
59 if (REQUEST_OUT_OF_RANGE (req)) { \
60 (sz) = 0; \
61 } \
62 else \
63 (sz) = request2size (req);
64

65 #define OUT_OF_RANGE ((unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE))
66

67

68 #define largebin_index_32(sz) \
69 (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\
70 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
71 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
72 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
73 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
74 126)
75

76 #define largebin_index_32_big(sz) \
77 (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\
78 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
79 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
80 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
81 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
82 126)
83

84 // XXX It remains to be seen whether it is good to keep the widths of
85 // XXX the buckets the same or whether it should be scaled by a factor



86 // XXX of two as well.
87 #define largebin_index_64(sz) \
88 (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\
89 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
90 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
91 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
92 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
93 126)
94

95 #define largebin_index(sz) \
96 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
97 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
98 : largebin_index_32 (sz))
99

100 #define bin_index(sz) \
101 ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz))
102

103 #define in_smallbin_range(sz) \
104 ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE)
105

106 #define smallbin_index(sz) \
107 ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\
108 + SMALLBIN_CORRECTION)
109

110

111 static INTERNAL_SIZE_T global_max_fast;
112

113 #define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
114

115 #define set_max_fast(s) \
116 global_max_fast = (((s) == 0) \
117 ? SMALLBIN_WIDTH : ((s + SIZE_SZ) & ˜MALLOC_ALIGN_MASK))
118

119 #define get_max_fast() global_max_fast
120

121 #define fastbin_index(sz) \
122 ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
123

124

125 #define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
126

127 #define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1)
128

129 /* Check if m has acceptable alignment */
130

131 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
132

133 #define misaligned_chunk(p) \
134 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
135 & MALLOC_ALIGN_MASK)
136

137

138 #ifndef DEFAULT_MMAP_THRESHOLD_MAX
139 /* For 32-bit platforms we cannot increase the maximum mmap
140 threshold much because it is also the minimum value for the
141 maximum heap size and its alignment. Going above 512k (i.e., 1M
142 for new heaps) wastes too much address space. */
143 # if __WORDSIZE == 32
144 # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
145 # else
146 # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
147 # endif
148 #endif



149

150

151 #define HEAP_MIN_SIZE (32 * 1024)
152 #ifndef HEAP_MAX_SIZE
153 # ifdef DEFAULT_MMAP_THRESHOLD_MAX
154 # define HEAP_MAX_SIZE (2 * DEFAULT_MMAP_THRESHOLD_MAX)
155 # else
156 # define HEAP_MAX_SIZE (1024 * 1024) /* must be a power of two */
157 # endif
158 #endif
159

160

161 #if __WORDSIZE == 32
162 # define MALLOC_STATE_SIZE 1108
163 # define HEAP_INFO_SIZE 16
164 # define ATTACHED_THREAD_SIZE sizeof(int)
165 #else
166 # define MALLOC_STATE_SIZE 2192
167 # define HEAP_INFO_SIZE 32
168 # define ATTACHED_THREAD_SIZE sizeof(long)
169 #endif
170

171

172

173

174 static void
175 display_mallinfo(void)
176 {
177 struct mallinfo mi;
178

179 mi = mallinfo();
180

181 printf("Total non-mmapped bytes (arena): %d\n", mi.arena);
182 printf("# of free chunks (ordblks): %d\n", mi.ordblks);
183 printf("# of free fastbin blocks (smblks): %d\n", mi.smblks);
184 printf("# of mapped regions (hblks): %d\n", mi.hblks);
185 printf("Bytes in mapped regions (hblkhd): %d\n", mi.hblkhd);
186 printf("Max. total allocated space (usmblks): %d\n", mi.usmblks);
187 printf("Free bytes held in fastbins (fsmblks): %d\n", mi.fsmblks);
188 printf("Total allocated space (uordblks): %d\n", mi.uordblks);
189 printf("Total free space (fordblks): %d\n", mi.fordblks);
190 printf("Topmost releasable block (keepcost): %d\n", mi.keepcost);
191 }
192

193 void fillHeapWithChunks(int first_heap, int subtract, int minorVersion){
194 int mmap_threshold = 128 * 1024;
195 int allocation_size = mmap_threshold / 2;
196 char* addr;
197

198 int i;
199 int allocated_size = 0;
200 int real_chunk_size;
201

202 // First heap contains not only a heap_info struct but also the malloc_state struct,
203 // so we need to subtract both sizes
204 // malloc_state has a size of 1108 for glibc version 2.23, and as it gets aligned,
205 // we subtract 1112 bytes here; 16 bytes for heap_info
206 if (first_heap == 1){
207 int malloc_state_size = MALLOC_STATE_SIZE;
208 if (minorVersion < 23){
209 malloc_state_size = malloc_state_size - ATTACHED_THREAD_SIZE;
210 //subtract = subtract - ATTACHED_THREAD_SIZE;
211 }



212 malloc_state_size = (malloc_state_size + MALLOC_ALIGN_MASK) &˜ MALLOC_ALIGN_MASK;
213 subtract = subtract + malloc_state_size;
214 }
215

216 subtract = subtract + HEAP_INFO_SIZE;
217

218 // at last, we make room for the bottom chunks
219 subtract = subtract + MINSIZE + MINSIZE/2;
220

221 while (allocated_size < (HEAP_MAX_SIZE - allocation_size - subtract)){
222 addr = (char*) malloc(allocation_size);
223 real_chunk_size = *(((long*)addr)-1) & 0xFFFFFFF8;
224 allocated_size = allocated_size + real_chunk_size;
225 //memset(addr, 65+i, malloc_usable_size(addr));
226 }
227

228 int last_size = HEAP_MAX_SIZE - allocated_size - subtract;
229

230

231 addr = (char*) malloc(last_size);
232 memset(addr, 65, malloc_usable_size(addr));
233 }
234

235 void generate_bin_map(){
236 int i;
237 int bin_counter = 0;
238 int last_size = 0;
239 for ( i=16; i <= 50000000; i = i + 8){
240 if (bin_index(i) > bin_counter){
241 //printf("Index for size %d is %d and has a distance of %d from the last bin.\n", i,

bin_index(i), i-last_size);
242 if (last_size != 0){
243 printf("and contains chunks with a size range of %d.\n",i-last_size);
244 }
245 printf("Index for size %d is %d ", i, bin_index(i));
246 bin_counter = bin_index(i);
247 last_size = i;
248 }
249 }
250 printf("and contains chunks with a size larger than %d\n", last_size);
251 }

Listing 44: The Program Code for the Library, used during research
The first output in Listing 45 represents the bin distributions for a 32 bit architecture, when MAL-

LOC ALIGNMENT is 8 byte (which is typically the case).
1 Index for size 16 is 2 and contains chunks with a size range of 8.
2 Index for size 24 is 3 and contains chunks with a size range of 8.
3 Index for size 32 is 4 and contains chunks with a size range of 8.
4 Index for size 40 is 5 and contains chunks with a size range of 8.
5 Index for size 48 is 6 and contains chunks with a size range of 8.
6 Index for size 56 is 7 and contains chunks with a size range of 8.
7 Index for size 64 is 8 and contains chunks with a size range of 8.
8 Index for size 72 is 9 and contains chunks with a size range of 8.
9 Index for size 80 is 10 and contains chunks with a size range of 8.

10 Index for size 88 is 11 and contains chunks with a size range of 8.
11 Index for size 96 is 12 and contains chunks with a size range of 8.
12 Index for size 104 is 13 and contains chunks with a size range of 8.
13 Index for size 112 is 14 and contains chunks with a size range of 8.
14 Index for size 120 is 15 and contains chunks with a size range of 8.
15 Index for size 128 is 16 and contains chunks with a size range of 8.
16 Index for size 136 is 17 and contains chunks with a size range of 8.
17 Index for size 144 is 18 and contains chunks with a size range of 8.



18 Index for size 152 is 19 and contains chunks with a size range of 8.
19 Index for size 160 is 20 and contains chunks with a size range of 8.
20 Index for size 168 is 21 and contains chunks with a size range of 8.
21 Index for size 176 is 22 and contains chunks with a size range of 8.
22 Index for size 184 is 23 and contains chunks with a size range of 8.
23 Index for size 192 is 24 and contains chunks with a size range of 8.
24 Index for size 200 is 25 and contains chunks with a size range of 8.
25 Index for size 208 is 26 and contains chunks with a size range of 8.
26 Index for size 216 is 27 and contains chunks with a size range of 8.
27 Index for size 224 is 28 and contains chunks with a size range of 8.
28 Index for size 232 is 29 and contains chunks with a size range of 8.
29 Index for size 240 is 30 and contains chunks with a size range of 8.
30 Index for size 248 is 31 and contains chunks with a size range of 8.
31 Index for size 256 is 32 and contains chunks with a size range of 8.
32 Index for size 264 is 33 and contains chunks with a size range of 8.
33 Index for size 272 is 34 and contains chunks with a size range of 8.
34 Index for size 280 is 35 and contains chunks with a size range of 8.
35 Index for size 288 is 36 and contains chunks with a size range of 8.
36 Index for size 296 is 37 and contains chunks with a size range of 8.
37 Index for size 304 is 38 and contains chunks with a size range of 8.
38 Index for size 312 is 39 and contains chunks with a size range of 8.
39 Index for size 320 is 40 and contains chunks with a size range of 8.
40 Index for size 328 is 41 and contains chunks with a size range of 8.
41 Index for size 336 is 42 and contains chunks with a size range of 8.
42 Index for size 344 is 43 and contains chunks with a size range of 8.
43 Index for size 352 is 44 and contains chunks with a size range of 8.
44 Index for size 360 is 45 and contains chunks with a size range of 8.
45 Index for size 368 is 46 and contains chunks with a size range of 8.
46 Index for size 376 is 47 and contains chunks with a size range of 8.
47 Index for size 384 is 48 and contains chunks with a size range of 8.
48 Index for size 392 is 49 and contains chunks with a size range of 8.
49 Index for size 400 is 50 and contains chunks with a size range of 8.
50 Index for size 408 is 51 and contains chunks with a size range of 8.
51 Index for size 416 is 52 and contains chunks with a size range of 8.
52 Index for size 424 is 53 and contains chunks with a size range of 8.
53 Index for size 432 is 54 and contains chunks with a size range of 8.
54 Index for size 440 is 55 and contains chunks with a size range of 8.
55 Index for size 448 is 56 and contains chunks with a size range of 8.
56 Index for size 456 is 57 and contains chunks with a size range of 8.
57 Index for size 464 is 58 and contains chunks with a size range of 8.
58 Index for size 472 is 59 and contains chunks with a size range of 8.
59 Index for size 480 is 60 and contains chunks with a size range of 8.
60 Index for size 488 is 61 and contains chunks with a size range of 8.
61 Index for size 496 is 62 and contains chunks with a size range of 8.
62 Index for size 504 is 63 and contains chunks with a size range of 8.
63 Index for size 512 is 64 and contains chunks with a size range of 64.
64 Index for size 576 is 65 and contains chunks with a size range of 64.
65 Index for size 640 is 66 and contains chunks with a size range of 64.
66 Index for size 704 is 67 and contains chunks with a size range of 64.
67 Index for size 768 is 68 and contains chunks with a size range of 64.
68 Index for size 832 is 69 and contains chunks with a size range of 64.
69 Index for size 896 is 70 and contains chunks with a size range of 64.
70 Index for size 960 is 71 and contains chunks with a size range of 64.
71 Index for size 1024 is 72 and contains chunks with a size range of 64.
72 Index for size 1088 is 73 and contains chunks with a size range of 64.
73 Index for size 1152 is 74 and contains chunks with a size range of 64.
74 Index for size 1216 is 75 and contains chunks with a size range of 64.
75 Index for size 1280 is 76 and contains chunks with a size range of 64.
76 Index for size 1344 is 77 and contains chunks with a size range of 64.
77 Index for size 1408 is 78 and contains chunks with a size range of 64.
78 Index for size 1472 is 79 and contains chunks with a size range of 64.
79 Index for size 1536 is 80 and contains chunks with a size range of 64.
80 Index for size 1600 is 81 and contains chunks with a size range of 64.



81 Index for size 1664 is 82 and contains chunks with a size range of 64.
82 Index for size 1728 is 83 and contains chunks with a size range of 64.
83 Index for size 1792 is 84 and contains chunks with a size range of 64.
84 Index for size 1856 is 85 and contains chunks with a size range of 64.
85 Index for size 1920 is 86 and contains chunks with a size range of 64.
86 Index for size 1984 is 87 and contains chunks with a size range of 64.
87 Index for size 2048 is 88 and contains chunks with a size range of 64.
88 Index for size 2112 is 89 and contains chunks with a size range of 64.
89 Index for size 2176 is 90 and contains chunks with a size range of 64.
90 Index for size 2240 is 91 and contains chunks with a size range of 64.
91 Index for size 2304 is 92 and contains chunks with a size range of 64.
92 Index for size 2368 is 93 and contains chunks with a size range of 64.
93 Index for size 2432 is 94 and contains chunks with a size range of 64.
94 Index for size 2496 is 95 and contains chunks with a size range of 64.
95 Index for size 2560 is 96 and contains chunks with a size range of 512.
96 Index for size 3072 is 97 and contains chunks with a size range of 512.
97 Index for size 3584 is 98 and contains chunks with a size range of 512.
98 Index for size 4096 is 99 and contains chunks with a size range of 512.
99 Index for size 4608 is 100 and contains chunks with a size range of 512.

100 Index for size 5120 is 101 and contains chunks with a size range of 512.
101 Index for size 5632 is 102 and contains chunks with a size range of 512.
102 Index for size 6144 is 103 and contains chunks with a size range of 512.
103 Index for size 6656 is 104 and contains chunks with a size range of 512.
104 Index for size 7168 is 105 and contains chunks with a size range of 512.
105 Index for size 7680 is 106 and contains chunks with a size range of 512.
106 Index for size 8192 is 107 and contains chunks with a size range of 512.
107 Index for size 8704 is 108 and contains chunks with a size range of 512.
108 Index for size 9216 is 109 and contains chunks with a size range of 512.
109 Index for size 9728 is 110 and contains chunks with a size range of 512.
110 Index for size 10240 is 111 and contains chunks with a size range of 512.
111 Index for size 10752 is 112 and contains chunks with a size range of 1536.
112 Index for size 12288 is 113 and contains chunks with a size range of 4096.
113 Index for size 16384 is 114 and contains chunks with a size range of 4096.
114 Index for size 20480 is 115 and contains chunks with a size range of 4096.
115 Index for size 24576 is 116 and contains chunks with a size range of 4096.
116 Index for size 28672 is 117 and contains chunks with a size range of 4096.
117 Index for size 32768 is 118 and contains chunks with a size range of 4096.
118 Index for size 36864 is 119 and contains chunks with a size range of 4096.
119 Index for size 40960 is 120 and contains chunks with a size range of 24576.
120 Index for size 65536 is 121 and contains chunks with a size range of 32768.
121 Index for size 98304 is 122 and contains chunks with a size range of 32768.
122 Index for size 131072 is 123 and contains chunks with a size range of 32768.
123 Index for size 163840 is 124 and contains chunks with a size range of 98304.
124 Index for size 262144 is 125 and contains chunks with a size range of 262144.
125 Index for size 524288 is 126 and contains chunks with a size larger than 524288

Listing 45: generate bin map output for 32 bit architecture
The second output in Listing 46 represents the bin distributions for a 32 bit architecture, when MAL-

LOC ALIGNMENT is set to 16 byte (which can be set via compile time flags; see Section II-D2 on page 15).
1 Index for size 16 is 2 and contains chunks with a size range of 16.
2 Index for size 32 is 3 and contains chunks with a size range of 16.
3 Index for size 48 is 4 and contains chunks with a size range of 16.
4 Index for size 64 is 5 and contains chunks with a size range of 16.
5 Index for size 80 is 6 and contains chunks with a size range of 16.
6 Index for size 96 is 7 and contains chunks with a size range of 16.
7 Index for size 112 is 8 and contains chunks with a size range of 16.
8 Index for size 128 is 9 and contains chunks with a size range of 16.
9 Index for size 144 is 10 and contains chunks with a size range of 16.

10 Index for size 160 is 11 and contains chunks with a size range of 16.
11 Index for size 176 is 12 and contains chunks with a size range of 16.
12 Index for size 192 is 13 and contains chunks with a size range of 16.
13 Index for size 208 is 14 and contains chunks with a size range of 16.



14 Index for size 224 is 15 and contains chunks with a size range of 16.
15 Index for size 240 is 16 and contains chunks with a size range of 16.
16 Index for size 256 is 17 and contains chunks with a size range of 16.
17 Index for size 272 is 18 and contains chunks with a size range of 16.
18 Index for size 288 is 19 and contains chunks with a size range of 16.
19 Index for size 304 is 20 and contains chunks with a size range of 16.
20 Index for size 320 is 21 and contains chunks with a size range of 16.
21 Index for size 336 is 22 and contains chunks with a size range of 16.
22 Index for size 352 is 23 and contains chunks with a size range of 16.
23 Index for size 368 is 24 and contains chunks with a size range of 16.
24 Index for size 384 is 25 and contains chunks with a size range of 16.
25 Index for size 400 is 26 and contains chunks with a size range of 16.
26 Index for size 416 is 27 and contains chunks with a size range of 16.
27 Index for size 432 is 28 and contains chunks with a size range of 16.
28 Index for size 448 is 29 and contains chunks with a size range of 16.
29 Index for size 464 is 30 and contains chunks with a size range of 16.
30 Index for size 480 is 31 and contains chunks with a size range of 16.
31 Index for size 496 is 32 and contains chunks with a size range of 16.
32 Index for size 512 is 33 and contains chunks with a size range of 16.
33 Index for size 528 is 34 and contains chunks with a size range of 16.
34 Index for size 544 is 35 and contains chunks with a size range of 16.
35 Index for size 560 is 36 and contains chunks with a size range of 16.
36 Index for size 576 is 37 and contains chunks with a size range of 16.
37 Index for size 592 is 38 and contains chunks with a size range of 16.
38 Index for size 608 is 39 and contains chunks with a size range of 16.
39 Index for size 624 is 40 and contains chunks with a size range of 16.
40 Index for size 640 is 41 and contains chunks with a size range of 16.
41 Index for size 656 is 42 and contains chunks with a size range of 16.
42 Index for size 672 is 43 and contains chunks with a size range of 16.
43 Index for size 688 is 44 and contains chunks with a size range of 16.
44 Index for size 704 is 45 and contains chunks with a size range of 16.
45 Index for size 720 is 46 and contains chunks with a size range of 16.
46 Index for size 736 is 47 and contains chunks with a size range of 16.
47 Index for size 752 is 48 and contains chunks with a size range of 16.
48 Index for size 768 is 49 and contains chunks with a size range of 16.
49 Index for size 784 is 50 and contains chunks with a size range of 16.
50 Index for size 800 is 51 and contains chunks with a size range of 16.
51 Index for size 816 is 52 and contains chunks with a size range of 16.
52 Index for size 832 is 53 and contains chunks with a size range of 16.
53 Index for size 848 is 54 and contains chunks with a size range of 16.
54 Index for size 864 is 55 and contains chunks with a size range of 16.
55 Index for size 880 is 56 and contains chunks with a size range of 16.
56 Index for size 896 is 57 and contains chunks with a size range of 16.
57 Index for size 912 is 58 and contains chunks with a size range of 16.
58 Index for size 928 is 59 and contains chunks with a size range of 16.
59 Index for size 944 is 60 and contains chunks with a size range of 16.
60 Index for size 960 is 61 and contains chunks with a size range of 16.
61 Index for size 976 is 62 and contains chunks with a size range of 16.
62 Index for size 992 is 63 and contains chunks with a size range of 16.
63 Index for size 1008 is 64 and contains chunks with a size range of 16.
64 Index for size 1024 is 65 and contains chunks with a size range of 64.
65 Index for size 1088 is 66 and contains chunks with a size range of 64.
66 Index for size 1152 is 67 and contains chunks with a size range of 64.
67 Index for size 1216 is 68 and contains chunks with a size range of 64.
68 Index for size 1280 is 69 and contains chunks with a size range of 64.
69 Index for size 1344 is 70 and contains chunks with a size range of 64.
70 Index for size 1408 is 71 and contains chunks with a size range of 64.
71 Index for size 1472 is 72 and contains chunks with a size range of 64.
72 Index for size 1536 is 73 and contains chunks with a size range of 64.
73 Index for size 1600 is 74 and contains chunks with a size range of 64.
74 Index for size 1664 is 75 and contains chunks with a size range of 64.
75 Index for size 1728 is 76 and contains chunks with a size range of 64.
76 Index for size 1792 is 77 and contains chunks with a size range of 64.



77 Index for size 1856 is 78 and contains chunks with a size range of 64.
78 Index for size 1920 is 79 and contains chunks with a size range of 64.
79 Index for size 1984 is 80 and contains chunks with a size range of 64.
80 Index for size 2048 is 81 and contains chunks with a size range of 64.
81 Index for size 2112 is 82 and contains chunks with a size range of 64.
82 Index for size 2176 is 83 and contains chunks with a size range of 64.
83 Index for size 2240 is 84 and contains chunks with a size range of 64.
84 Index for size 2304 is 85 and contains chunks with a size range of 64.
85 Index for size 2368 is 86 and contains chunks with a size range of 64.
86 Index for size 2432 is 87 and contains chunks with a size range of 64.
87 Index for size 2496 is 88 and contains chunks with a size range of 64.
88 Index for size 2560 is 89 and contains chunks with a size range of 64.
89 Index for size 2624 is 90 and contains chunks with a size range of 64.
90 Index for size 2688 is 91 and contains chunks with a size range of 64.
91 Index for size 2752 is 92 and contains chunks with a size range of 64.
92 Index for size 2816 is 93 and contains chunks with a size range of 64.
93 Index for size 2880 is 94 and contains chunks with a size range of 64.
94 Index for size 2944 is 96 and contains chunks with a size range of 128.
95 Index for size 3072 is 97 and contains chunks with a size range of 512.
96 Index for size 3584 is 98 and contains chunks with a size range of 512.
97 Index for size 4096 is 99 and contains chunks with a size range of 512.
98 Index for size 4608 is 100 and contains chunks with a size range of 512.
99 Index for size 5120 is 101 and contains chunks with a size range of 512.

100 Index for size 5632 is 102 and contains chunks with a size range of 512.
101 Index for size 6144 is 103 and contains chunks with a size range of 512.
102 Index for size 6656 is 104 and contains chunks with a size range of 512.
103 Index for size 7168 is 105 and contains chunks with a size range of 512.
104 Index for size 7680 is 106 and contains chunks with a size range of 512.
105 Index for size 8192 is 107 and contains chunks with a size range of 512.
106 Index for size 8704 is 108 and contains chunks with a size range of 512.
107 Index for size 9216 is 109 and contains chunks with a size range of 512.
108 Index for size 9728 is 110 and contains chunks with a size range of 512.
109 Index for size 10240 is 111 and contains chunks with a size range of 512.
110 Index for size 10752 is 112 and contains chunks with a size range of 1536.
111 Index for size 12288 is 113 and contains chunks with a size range of 4096.
112 Index for size 16384 is 114 and contains chunks with a size range of 4096.
113 Index for size 20480 is 115 and contains chunks with a size range of 4096.
114 Index for size 24576 is 116 and contains chunks with a size range of 4096.
115 Index for size 28672 is 117 and contains chunks with a size range of 4096.
116 Index for size 32768 is 118 and contains chunks with a size range of 4096.
117 Index for size 36864 is 119 and contains chunks with a size range of 4096.
118 Index for size 40960 is 120 and contains chunks with a size range of 24576.
119 Index for size 65536 is 121 and contains chunks with a size range of 32768.
120 Index for size 98304 is 122 and contains chunks with a size range of 32768.
121 Index for size 131072 is 123 and contains chunks with a size range of 32768.
122 Index for size 163840 is 124 and contains chunks with a size range of 98304.
123 Index for size 262144 is 125 and contains chunks with a size range of 262144.
124 Index for size 524288 is 126 and contains chunks with a size larger than 524288

Listing 46: generate bin map output for 32 bit architecture with large MALLOC ALIGNMENT
The following last listing shows the typical distribution for 64 bit architectures.

1 Index for size 16 is 1 and contains chunks with a size range of 16.
2 Index for size 32 is 2 and contains chunks with a size range of 16.
3 Index for size 48 is 3 and contains chunks with a size range of 16.
4 Index for size 64 is 4 and contains chunks with a size range of 16.
5 Index for size 80 is 5 and contains chunks with a size range of 16.
6 Index for size 96 is 6 and contains chunks with a size range of 16.
7 Index for size 112 is 7 and contains chunks with a size range of 16.
8 Index for size 128 is 8 and contains chunks with a size range of 16.
9 Index for size 144 is 9 and contains chunks with a size range of 16.

10 Index for size 160 is 10 and contains chunks with a size range of 16.
11 Index for size 176 is 11 and contains chunks with a size range of 16.



12 Index for size 192 is 12 and contains chunks with a size range of 16.
13 Index for size 208 is 13 and contains chunks with a size range of 16.
14 Index for size 224 is 14 and contains chunks with a size range of 16.
15 Index for size 240 is 15 and contains chunks with a size range of 16.
16 Index for size 256 is 16 and contains chunks with a size range of 16.
17 Index for size 272 is 17 and contains chunks with a size range of 16.
18 Index for size 288 is 18 and contains chunks with a size range of 16.
19 Index for size 304 is 19 and contains chunks with a size range of 16.
20 Index for size 320 is 20 and contains chunks with a size range of 16.
21 Index for size 336 is 21 and contains chunks with a size range of 16.
22 Index for size 352 is 22 and contains chunks with a size range of 16.
23 Index for size 368 is 23 and contains chunks with a size range of 16.
24 Index for size 384 is 24 and contains chunks with a size range of 16.
25 Index for size 400 is 25 and contains chunks with a size range of 16.
26 Index for size 416 is 26 and contains chunks with a size range of 16.
27 Index for size 432 is 27 and contains chunks with a size range of 16.
28 Index for size 448 is 28 and contains chunks with a size range of 16.
29 Index for size 464 is 29 and contains chunks with a size range of 16.
30 Index for size 480 is 30 and contains chunks with a size range of 16.
31 Index for size 496 is 31 and contains chunks with a size range of 16.
32 Index for size 512 is 32 and contains chunks with a size range of 16.
33 Index for size 528 is 33 and contains chunks with a size range of 16.
34 Index for size 544 is 34 and contains chunks with a size range of 16.
35 Index for size 560 is 35 and contains chunks with a size range of 16.
36 Index for size 576 is 36 and contains chunks with a size range of 16.
37 Index for size 592 is 37 and contains chunks with a size range of 16.
38 Index for size 608 is 38 and contains chunks with a size range of 16.
39 Index for size 624 is 39 and contains chunks with a size range of 16.
40 Index for size 640 is 40 and contains chunks with a size range of 16.
41 Index for size 656 is 41 and contains chunks with a size range of 16.
42 Index for size 672 is 42 and contains chunks with a size range of 16.
43 Index for size 688 is 43 and contains chunks with a size range of 16.
44 Index for size 704 is 44 and contains chunks with a size range of 16.
45 Index for size 720 is 45 and contains chunks with a size range of 16.
46 Index for size 736 is 46 and contains chunks with a size range of 16.
47 Index for size 752 is 47 and contains chunks with a size range of 16.
48 Index for size 768 is 48 and contains chunks with a size range of 16.
49 Index for size 784 is 49 and contains chunks with a size range of 16.
50 Index for size 800 is 50 and contains chunks with a size range of 16.
51 Index for size 816 is 51 and contains chunks with a size range of 16.
52 Index for size 832 is 52 and contains chunks with a size range of 16.
53 Index for size 848 is 53 and contains chunks with a size range of 16.
54 Index for size 864 is 54 and contains chunks with a size range of 16.
55 Index for size 880 is 55 and contains chunks with a size range of 16.
56 Index for size 896 is 56 and contains chunks with a size range of 16.
57 Index for size 912 is 57 and contains chunks with a size range of 16.
58 Index for size 928 is 58 and contains chunks with a size range of 16.
59 Index for size 944 is 59 and contains chunks with a size range of 16.
60 Index for size 960 is 60 and contains chunks with a size range of 16.
61 Index for size 976 is 61 and contains chunks with a size range of 16.
62 Index for size 992 is 62 and contains chunks with a size range of 16.
63 Index for size 1008 is 63 and contains chunks with a size range of 16.
64 Index for size 1024 is 64 and contains chunks with a size range of 64.
65 Index for size 1088 is 65 and contains chunks with a size range of 64.
66 Index for size 1152 is 66 and contains chunks with a size range of 64.
67 Index for size 1216 is 67 and contains chunks with a size range of 64.
68 Index for size 1280 is 68 and contains chunks with a size range of 64.
69 Index for size 1344 is 69 and contains chunks with a size range of 64.
70 Index for size 1408 is 70 and contains chunks with a size range of 64.
71 Index for size 1472 is 71 and contains chunks with a size range of 64.
72 Index for size 1536 is 72 and contains chunks with a size range of 64.
73 Index for size 1600 is 73 and contains chunks with a size range of 64.
74 Index for size 1664 is 74 and contains chunks with a size range of 64.



75 Index for size 1728 is 75 and contains chunks with a size range of 64.
76 Index for size 1792 is 76 and contains chunks with a size range of 64.
77 Index for size 1856 is 77 and contains chunks with a size range of 64.
78 Index for size 1920 is 78 and contains chunks with a size range of 64.
79 Index for size 1984 is 79 and contains chunks with a size range of 64.
80 Index for size 2048 is 80 and contains chunks with a size range of 64.
81 Index for size 2112 is 81 and contains chunks with a size range of 64.
82 Index for size 2176 is 82 and contains chunks with a size range of 64.
83 Index for size 2240 is 83 and contains chunks with a size range of 64.
84 Index for size 2304 is 84 and contains chunks with a size range of 64.
85 Index for size 2368 is 85 and contains chunks with a size range of 64.
86 Index for size 2432 is 86 and contains chunks with a size range of 64.
87 Index for size 2496 is 87 and contains chunks with a size range of 64.
88 Index for size 2560 is 88 and contains chunks with a size range of 64.
89 Index for size 2624 is 89 and contains chunks with a size range of 64.
90 Index for size 2688 is 90 and contains chunks with a size range of 64.
91 Index for size 2752 is 91 and contains chunks with a size range of 64.
92 Index for size 2816 is 92 and contains chunks with a size range of 64.
93 Index for size 2880 is 93 and contains chunks with a size range of 64.
94 Index for size 2944 is 94 and contains chunks with a size range of 64.
95 Index for size 3008 is 95 and contains chunks with a size range of 64.
96 Index for size 3072 is 96 and contains chunks with a size range of 64.
97 Index for size 3136 is 97 and contains chunks with a size range of 448.
98 Index for size 3584 is 98 and contains chunks with a size range of 512.
99 Index for size 4096 is 99 and contains chunks with a size range of 512.

100 Index for size 4608 is 100 and contains chunks with a size range of 512.
101 Index for size 5120 is 101 and contains chunks with a size range of 512.
102 Index for size 5632 is 102 and contains chunks with a size range of 512.
103 Index for size 6144 is 103 and contains chunks with a size range of 512.
104 Index for size 6656 is 104 and contains chunks with a size range of 512.
105 Index for size 7168 is 105 and contains chunks with a size range of 512.
106 Index for size 7680 is 106 and contains chunks with a size range of 512.
107 Index for size 8192 is 107 and contains chunks with a size range of 512.
108 Index for size 8704 is 108 and contains chunks with a size range of 512.
109 Index for size 9216 is 109 and contains chunks with a size range of 512.
110 Index for size 9728 is 110 and contains chunks with a size range of 512.
111 Index for size 10240 is 111 and contains chunks with a size range of 512.
112 Index for size 10752 is 112 and contains chunks with a size range of 1536.
113 Index for size 12288 is 113 and contains chunks with a size range of 4096.
114 Index for size 16384 is 114 and contains chunks with a size range of 4096.
115 Index for size 20480 is 115 and contains chunks with a size range of 4096.
116 Index for size 24576 is 116 and contains chunks with a size range of 4096.
117 Index for size 28672 is 117 and contains chunks with a size range of 4096.
118 Index for size 32768 is 118 and contains chunks with a size range of 4096.
119 Index for size 36864 is 119 and contains chunks with a size range of 4096.
120 Index for size 40960 is 120 and contains chunks with a size range of 24576.
121 Index for size 65536 is 121 and contains chunks with a size range of 32768.
122 Index for size 98304 is 122 and contains chunks with a size range of 32768.
123 Index for size 131072 is 123 and contains chunks with a size range of 32768.
124 Index for size 163840 is 124 and contains chunks with a size range of 98304.
125 Index for size 262144 is 125 and contains chunks with a size range of 262144.
126 Index for size 524288 is 126 and contains chunks with a size larger than 524288

Listing 47: generate bin map output for 64 bit architecture
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