Increasing Regulatory Burden on UK Pharma Fuels Need for E-Discovery Solution

AccessData just released a new white paper that discusses the growing litigation risks and regulatory pressures on UK pharmaceutical companies and the need for technology solutions to e-discovery.

The management of electronic data is a complex and time-consuming challenge for corporate legal executives in any industry. These challenges are especially acute for UK companies in the pharmaceutical industry where corporate executive teams are faced with managing electronic data that resides on email servers and other data repositories. Pharmaceutical companies face an even greater e-discovery challenge when it comes to harvesting data from restricted information sources such as clinical trial records, adverse reaction findings and highly confidential sales analysis reports.

The challenges are great but the technology is there. This white paper details key strategies to help pharmaceutical executives better manage their e-discovery responsibilities.

Download the White Paper

Get The Latest DFIR News!

Top DFIR articles in your inbox every month.


Unsubscribe any time. We respect your privacy - read our privacy policy.

Leave a Comment

Latest Videos

Quantifying Data Volatility for IoT Forensics With Examples From Contiki OS

Forensic Focus 22nd June 2022 5:00 am

File timestamps are used by forensics practitioners as a fundamental artifact. For example, the creation of user files can show traces of user activity, while system files, like configuration and log files, typically reveal when a program was run. 

Despite timestamps being ubiquitous, the understanding of their exact meaning is mostly overlooked in favor of fully-automated, correlation-based approaches. Existing work for practitioners aims at understanding Windows and is not directly applicable to Unix-like systems. 

In this paper, we review how each layer of the software stack (kernel, file system, libraries, application) influences MACB timestamps on Unix systems such as Linux, OpenBSD, FreeBSD and macOS.

We examine how POSIX specifies the timestamp behavior and propose a framework for automatically profiling OS kernels, user mode libraries and applications, including compliance checks against POSIX.

Our implementation covers four different operating systems, the GIO and Qt library, as well as several user mode applications and is released as open-source.

Based on 187 compliance tests and automated profiling covering common file operations, we found multiple unexpected and non-compliant behaviors, both on common operations and in edge cases.

Furthermore, we provide tables summarizing timestamp behavior aimed to be used by practitioners as a quick-reference.

Learn more: https://dfrws.org/presentation/a-systematic-approach-to-understanding-macb-timestamps-on-unixlike-systems/

File timestamps are used by forensics practitioners as a fundamental artifact. For example, the creation of user files can show traces of user activity, while system files, like configuration and log files, typically reveal when a program was run.

Despite timestamps being ubiquitous, the understanding of their exact meaning is mostly overlooked in favor of fully-automated, correlation-based approaches. Existing work for practitioners aims at understanding Windows and is not directly applicable to Unix-like systems.

In this paper, we review how each layer of the software stack (kernel, file system, libraries, application) influences MACB timestamps on Unix systems such as Linux, OpenBSD, FreeBSD and macOS.

We examine how POSIX specifies the timestamp behavior and propose a framework for automatically profiling OS kernels, user mode libraries and applications, including compliance checks against POSIX.

Our implementation covers four different operating systems, the GIO and Qt library, as well as several user mode applications and is released as open-source.

Based on 187 compliance tests and automated profiling covering common file operations, we found multiple unexpected and non-compliant behaviors, both on common operations and in edge cases.

Furthermore, we provide tables summarizing timestamp behavior aimed to be used by practitioners as a quick-reference.

Learn more: https://dfrws.org/presentation/a-systematic-approach-to-understanding-macb-timestamps-on-unixlike-systems/

YouTube Video UCQajlJPesqmyWJDN52AZI4Q_i0zd7HtluzY

A Systematic Approach to Understanding MACB Timestamps on Unixlike Systems

Forensic Focus 21st June 2022 5:00 am

This error message is only visible to WordPress admins

Important: No API Key Entered.

Many features are not available without adding an API Key. Please go to the YouTube Feed settings page to add an API key after following these instructions.

Latest Articles

Share to...