Register Now For Techno Security & Digital Forensics Conference

Register now for Techno Security & Digital Forensics Conference and receive 30% off early-bird rates!

Join the industry for Techno Security & Digital Forensics Conference taking place June 3-6, 2018 at the Marriott Resort at Grande Dunes in Myrtle Beach, SC. This brand has grown into one of the most important resources for corporate network security professionals, federal, state and local law enforcement digital forensic specialists, and cybersecurity industry leaders from around the world.

The 2018 event will feature 90+ speakers, 80+ sessions, and 55+ sponsors/exhibits over four days of networking among 1,000 cybersecurity and digital forensics industry professionals.

Primary topics include Audit/Risk Management, Forensics (digital/mobile), Investigations, Information Security, Cellebrite Lab, and Magnet Forensics Lab.

Get The Latest DFIR News!

Top DFIR articles in your inbox every month.


Unsubscribe any time. We respect your privacy - read our privacy policy.

Connect with leading suppliers, explore the latest tools, and discover solutions to challenges in cybersecurity and digital forensics.

Special Registration Offer: Receive 30% off registration rates with Promo Code FFOCUS18. Register before March 30th to receive the early-bird registration rate AND the additional 30% off!

For full details and to register, visit www.TechnoSecurity.us.

Leave a Comment

Latest Videos

Quantifying Data Volatility for IoT Forensics With Examples From Contiki OS

Forensic Focus 22nd June 2022 5:00 am

File timestamps are used by forensics practitioners as a fundamental artifact. For example, the creation of user files can show traces of user activity, while system files, like configuration and log files, typically reveal when a program was run. 

Despite timestamps being ubiquitous, the understanding of their exact meaning is mostly overlooked in favor of fully-automated, correlation-based approaches. Existing work for practitioners aims at understanding Windows and is not directly applicable to Unix-like systems. 

In this paper, we review how each layer of the software stack (kernel, file system, libraries, application) influences MACB timestamps on Unix systems such as Linux, OpenBSD, FreeBSD and macOS.

We examine how POSIX specifies the timestamp behavior and propose a framework for automatically profiling OS kernels, user mode libraries and applications, including compliance checks against POSIX.

Our implementation covers four different operating systems, the GIO and Qt library, as well as several user mode applications and is released as open-source.

Based on 187 compliance tests and automated profiling covering common file operations, we found multiple unexpected and non-compliant behaviors, both on common operations and in edge cases.

Furthermore, we provide tables summarizing timestamp behavior aimed to be used by practitioners as a quick-reference.

Learn more: https://dfrws.org/presentation/a-systematic-approach-to-understanding-macb-timestamps-on-unixlike-systems/

File timestamps are used by forensics practitioners as a fundamental artifact. For example, the creation of user files can show traces of user activity, while system files, like configuration and log files, typically reveal when a program was run.

Despite timestamps being ubiquitous, the understanding of their exact meaning is mostly overlooked in favor of fully-automated, correlation-based approaches. Existing work for practitioners aims at understanding Windows and is not directly applicable to Unix-like systems.

In this paper, we review how each layer of the software stack (kernel, file system, libraries, application) influences MACB timestamps on Unix systems such as Linux, OpenBSD, FreeBSD and macOS.

We examine how POSIX specifies the timestamp behavior and propose a framework for automatically profiling OS kernels, user mode libraries and applications, including compliance checks against POSIX.

Our implementation covers four different operating systems, the GIO and Qt library, as well as several user mode applications and is released as open-source.

Based on 187 compliance tests and automated profiling covering common file operations, we found multiple unexpected and non-compliant behaviors, both on common operations and in edge cases.

Furthermore, we provide tables summarizing timestamp behavior aimed to be used by practitioners as a quick-reference.

Learn more: https://dfrws.org/presentation/a-systematic-approach-to-understanding-macb-timestamps-on-unixlike-systems/

YouTube Video UCQajlJPesqmyWJDN52AZI4Q_i0zd7HtluzY

A Systematic Approach to Understanding MACB Timestamps on Unixlike Systems

Forensic Focus 21st June 2022 5:00 am

This error message is only visible to WordPress admins

Important: No API Key Entered.

Many features are not available without adding an API Key. Please go to the YouTube Feed settings page to add an API key after following these instructions.

Latest Articles

Share to...