Through Google Glass — Preparing Digital Forensics and Cyber Security Education

Google Glass, the voice-controlled glasses that act as a wearable computer, recently became available to a handful of initial testers. After participating in an application process and submitting a proposal on how I would use the product, I was selected as a Glass Explorer for Google. As an educator, I emphasized that Google Glass had tremendous educational value, and could be used to develop curricula for middle and high school students on cyber security and digital forensics. This would help contribute to Science Technology Engineering and Mathematics (STEM) education, and the technology would allow me to share my passion and empower others to choose an excellent career path. As a cyber security professional, I articulated excitement about how Google Glass can be utilized to change the face of digital forensics and how we keep our nation and various corporations secure…

Read More (Huff Post)

Leave a Comment

Latest Videos

Quantifying Data Volatility for IoT Forensics With Examples From Contiki OS

Forensic Focus 22nd June 2022 5:00 am

File timestamps are used by forensics practitioners as a fundamental artifact. For example, the creation of user files can show traces of user activity, while system files, like configuration and log files, typically reveal when a program was run. 

Despite timestamps being ubiquitous, the understanding of their exact meaning is mostly overlooked in favor of fully-automated, correlation-based approaches. Existing work for practitioners aims at understanding Windows and is not directly applicable to Unix-like systems. 

In this paper, we review how each layer of the software stack (kernel, file system, libraries, application) influences MACB timestamps on Unix systems such as Linux, OpenBSD, FreeBSD and macOS.

We examine how POSIX specifies the timestamp behavior and propose a framework for automatically profiling OS kernels, user mode libraries and applications, including compliance checks against POSIX.

Our implementation covers four different operating systems, the GIO and Qt library, as well as several user mode applications and is released as open-source.

Based on 187 compliance tests and automated profiling covering common file operations, we found multiple unexpected and non-compliant behaviors, both on common operations and in edge cases.

Furthermore, we provide tables summarizing timestamp behavior aimed to be used by practitioners as a quick-reference.

Learn more: https://dfrws.org/presentation/a-systematic-approach-to-understanding-macb-timestamps-on-unixlike-systems/

File timestamps are used by forensics practitioners as a fundamental artifact. For example, the creation of user files can show traces of user activity, while system files, like configuration and log files, typically reveal when a program was run.

Despite timestamps being ubiquitous, the understanding of their exact meaning is mostly overlooked in favor of fully-automated, correlation-based approaches. Existing work for practitioners aims at understanding Windows and is not directly applicable to Unix-like systems.

In this paper, we review how each layer of the software stack (kernel, file system, libraries, application) influences MACB timestamps on Unix systems such as Linux, OpenBSD, FreeBSD and macOS.

We examine how POSIX specifies the timestamp behavior and propose a framework for automatically profiling OS kernels, user mode libraries and applications, including compliance checks against POSIX.

Our implementation covers four different operating systems, the GIO and Qt library, as well as several user mode applications and is released as open-source.

Based on 187 compliance tests and automated profiling covering common file operations, we found multiple unexpected and non-compliant behaviors, both on common operations and in edge cases.

Furthermore, we provide tables summarizing timestamp behavior aimed to be used by practitioners as a quick-reference.

Learn more: https://dfrws.org/presentation/a-systematic-approach-to-understanding-macb-timestamps-on-unixlike-systems/

YouTube Video UCQajlJPesqmyWJDN52AZI4Q_i0zd7HtluzY

A Systematic Approach to Understanding MACB Timestamps on Unixlike Systems

Forensic Focus 21st June 2022 5:00 am

This error message is only visible to WordPress admins

Important: No API Key Entered.

Many features are not available without adding an API Key. Please go to the YouTube Feed settings page to add an API key after following these instructions.

Latest Articles

Share to...